Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(v\) là vận tốc ban đầu của xe.
Suy ra:
\(v_1^2-v^2=2a\dfrac{S}{4}\Rightarrow (v_1-v)(v_1+v)=2a\dfrac{S}{4}\) (1)
\(v_1=v+at_1\Rightarrow v_1-v=at_1\) (2)
Thế (2) vào (1) ta được:
\(at_1.(v_1+v)=2a\dfrac{S}{4}\Rightarrow v=\dfrac{S}{2t_1}-v_1\)
Thế vào (2) ta được: \(2v_1-\dfrac{S}{2t_1}=a.t_1\Rightarrow a = \dfrac{2v_1}{t_1}-\dfrac{S}{2t_1^2}\)
Gọi \(v_2,t_2\) là vận tốc ở cuối đoạn đường và thời gian đi hết đoạn đường đó
Suy ra
\(v_2^2-v^2=2a.S\) (3)
\(v_2=v+at_2\) (4)
Bạn thế v và a ở trên vào PT (3) và (4) rồi tính tiếp nhé.
So sánh được vận tốc trung bình mà e:
Xét \(v_{tb1}-v_{tb2}=\dfrac{2v_1v_2}{v_1+v_2}-\dfrac{v_1+v_2}{2}=\dfrac{4v_1v_2-\left(v_1+v_2\right)^2}{2\left(v_1+v_2\right)}=\dfrac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}\le0\)
\(\Rightarrow v_{tb1}\le v_{tb2}\)
bạn xem lại đề nhé chứ ko có vận tốc = bao nhiêu ko tính được nhé
Quãng đường vật chuyển động: \(S=v_0t+\dfrac{1}{2}at^2=20t+\dfrac{1}{2}at^2\)
Vật chuyển động chậm dần đều \((a=0m/s^2)\) cho đến khi vật dừng lại \((v=0m/s)\).
\(v^2-v_0^2=2aS\Rightarrow S=\dfrac{-20^2}{2\cdot a}=-\dfrac{200}{a}\left(m\right)\)
\(\Rightarrow20t+\dfrac{1}{2}at^2=-\dfrac{200}{a}\)
Mà \(v=v_0+at=20+at=0\Rightarrow a=-\dfrac{20}{t}\)
Như vậy: \(\Rightarrow20t+\dfrac{1}{2}\cdot\left(-\dfrac{20}{t}\right)\cdot t^2=-\dfrac{200}{-\dfrac{20}{t}}\)
\(\Rightarrow t=1272,7s\)
Gia tốc vật: \(a=-\dfrac{20}{1272,7}\approx-0,0157m/s^2\)
Thời gian đi hết nửa quãng đường đầu là:
Ta có: \(v_1=\dfrac{s_1}{t_1}\Leftrightarrow t_1=\dfrac{\dfrac{s}{2}}{v_1}=\dfrac{\dfrac{240}{2}}{5}=24\left(s\right)\)
Thời gian đi hết nửa quãng đường sau là:
Ta có: \(v_2=\dfrac{s_2}{t_2}\Leftrightarrow t_2=\dfrac{\dfrac{s}{2}}{v_2}=\dfrac{\dfrac{240}{2}}{6}=20\left(s\right)\)
Thời gian đi hết quãng đường AB là:
\(t_{AB}=t_1+t_2=24+20=44\left(s\right)\)