Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn dao động bằng véc tơ quay:
x 4 -4 -2 M N O 30°
Ban đầu, véc tơ quay xuất phát ở M, để dao động đi được 6cm thì véc tơ quay sẽ quay đến N.
Trên hình vẽ ta tìm được góc quay là: \(\alpha=90+30=120^0\)
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{\pi}{30}\)
\(\Rightarrow T=\dfrac{\pi}{10} (s)\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Cơ năng của vật: \(W=\dfrac{1}{2}.m.\omega^2.A^2=\dfrac{1}{2}.1.20^2.0,04^2=0,32(J)\)
\(20-10\sqrt{2\left(A-\frac{A}{\sqrt{2}}\right)}\Rightarrow\frac{T}{4}=1\Rightarrow T=4\left(s\right)\)
\(S=S_{2012}-S_{2011}=A\sqrt{2}=10\sqrt{2}\) (cm)
Không có đáp án đó nhưng bạn giải thích cách làm của bạn cho mình với.
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=0,5s\)
Từ thời điểm t = 0 đến t = 0,5s bằng đúng 1 chu kì nên quãng đường vật đi được là: \(4A=4.6=24cm\)
T=1s.
Trong thời gian 0,5s = T/2 vật đi quãng đường là 2.A = 2.8=16cm.
Tham khảo:
\(\left\{{}\begin{matrix}T=\dfrac{2\pi}{\omega}=0,5\left(s\right)\Rightarrow\dfrac{T}{2}=0,25\left(s\right)\Rightarrow\dfrac{\Delta t'}{\dfrac{T}{2}}=\dfrac{7}{6}:0,25=4,6\\\Delta t'=\dfrac{7}{6}\left(s\right)=4\cdot0,25+\dfrac{1}{6}=4\dfrac{T}{2}+\dfrac{T}{3}\\\Rightarrow S'_{min}=4\cdot2A+A=45\left(cm\right)\end{matrix}\right.\)
Chu kì dao động: \(T=\frac{2\pi}{\omega}=0,5s\)
Trong dao động điều hòa, động năng và thế năng biến thiên tuần hoàn với chu kì bằng 1/2 chu kì dao động.
\(\Rightarrow T'=\frac{0,5}{2}=0,25s\)
Để tính quảng đường và số lần vật qua vị trí x = -2cm trong khoảng thời gian từ t1 = 0.25s đến t2 = 2.125s, chúng ta cần tìm giá trị của t khi vị trí x bằng -2cm.
Theo phương trình x = 4cos(4πt + x/4), ta có: 4cos(4πt + x/4) = -2 cos(4πt + x/4) = -1/2
Để tìm giá trị của t, ta sử dụng hàm nghịch đảo của hàm cos: 4πt + x/4 = π + 2kπ hoặc 4πt + x/4 = 2π - 2kπ, với k là số nguyên.
Giải phương trình đầu tiên: 4πt + x/4 = π + 2kπ 4πt = π + 2kπ - x/4 t = (π + 2kπ - x/4) / (4π)
Giải phương trình thứ hai: 4πt + x/4 = 2π - 2kπ 4πt = 2π - 2kπ - x/4 t = (2π - 2kπ - x/4) / (4π)
Từ đây, ta có thể tính giá trị của t bằng cách thay x = -2cm, kết hợp với giá trị của k từ t1 đến t2:
t1 = (π + 2kπ + 2/4) / (4π) t2 = (2π - 2kπ + 2/4) / (4π)
Từ đó, ta tính được quảng đường vật đi được: S1 = 4cos(4πt1 + x/4) S2 = 4cos(4πt2 + x/4)
Vậy, quảng đường và số lần vật qua vị trí x = -2cm từ t1=0.25s đến t2=2.125s là S2 - S1 và số lần vật qua vị trí x = -2cm sẽ là số k thỏa mãn trong khoảng từ t1 đến t2
Để tính quãng đường vật đi được sau 0,25 s, ta có thể sử dụng phương trình dao động điều hòa x = A * cos(2π/T * t + φ), trong đó x là vị trí của vật (cm), A là biên độ của vật (cm), T là chu kỳ của dao động (s), t là thời gian (s), và φ là góc pha ban đầu (rad).
Trong trường hợp này, phương trình dao động là x = 4cos(4πt + π/4). Ta có thể nhận thấy rằng biên độ của vật là 4 cm và chu kỳ của dao động là T = 1/4 s.
Để tính quãng đường vật đi được sau 0,25 s, ta thay t = 0,25 vào phương trình:
x = 4cos(4π * 0,25 + π/4)
x = 4cos(π + π/4)
x = 4cos(5π/4)
x ≈ 4 * (-0,7071)
x ≈ -2,8284 cm
Vậy, quãng đường vật đi được sau 0,25 s kể từ khi bắt đầu chuyển động là khoảng -2,8284 cm.