K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Bài này gia tốc phải là: \(a=-4\sqrt 2(m/s^2)=-400\sqrt 2(cm/s^2)\)

PT dao động: \(x=A\cos\Phi\) (với \(\Phi\) là pha của dao động)

Suy ra gia tốc: \(a=-\omega^2x = -\omega^2.A\cos\Phi\)

Thay vào ta có:

\(-400\sqrt 2=-\omega^2.5.\cos\dfrac{\pi}{4}\)

\(\Rightarrow \omega = 4\pi(rad/s)\)

Chu kì: \(T=2\pi/\omega=0,5s\)

21 tháng 9 2020
https://i.imgur.com/D9p6PNf.jpg
22 tháng 9 2020

Combo 3 câu :)

4/ \(f=5Hz\Rightarrow\omega=10\pi\left(rad/s\right)\)

\(A^2=x^2+\frac{v^2}{\omega^2}\Leftrightarrow A=\sqrt{\left(2\sqrt{3}\right)^2+\frac{20^2\pi^2}{10^2\pi^2}}=4\left(cm\right)\)

\(2\sqrt{3}=4\cos\varphi\Rightarrow\varphi=\pm\frac{\pi}{6}\)

\(v=-20\pi< 0\Rightarrow\varphi>0\Rightarrow\varphi=\frac{\pi}{6}\)

\(\Rightarrow x=4\cos\left(10\pi t+\frac{\pi}{6}\right)\)

5/ \(A^2=\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}\Rightarrow A=\sqrt{\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}}=...\)

6/ Áp dụng công thức ở câu 5

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

7 tháng 11 2023

\(a=-8m/s^2\) và pha dao động \(\varphi=\dfrac{\pi}{4}\)

\(\omega=2\pi f=2\pi\cdot2=4\pi\)

Mà \(a=-\omega^2Acos\varphi\) nên \(-8=-\left(4\pi\right)^2\cdot Acos\dfrac{\pi}{4}\)

\(\Rightarrow A=\dfrac{-8}{-4^2\cdot10\cdot\dfrac{\sqrt{2}}{2}}=\dfrac{\sqrt{2}}{20}\left(m\right)\approx7,1cm\)

24 tháng 7 2016

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

8 tháng 10 2015

Áp dụng: \(a = -\omega^2 x =-(2\pi)^2.3 = - 120\ cm/s^2 \)

28 tháng 10 2015

Áp dụng: \(v_{max}= \omega A \Rightarrow \omega = \frac{v_{max}}{A} = \frac{10\pi}{5} = 2\pi \ (rad/s)\)

\(\Rightarrow T = \frac{2\pi}{\omega} = 1 s\)

30 tháng 5 2017

\(A^2=x^2+\dfrac{v^2}{\left(\omega^2\right)}=8\Rightarrow A=2\sqrt{2}\Rightarrow x=Acos\left(\varphi t\right)\Rightarrow cos\left(\varphi t\right)=\dfrac{x}{A}=\dfrac{\sqrt{2}}{2}\Rightarrow\varphi t=\dfrac{-\pi}{4}\)

18 tháng 7 2019
https://i.imgur.com/Kww4hSy.jpg
18 tháng 7 2019
https://i.imgur.com/LxWhTac.jpg
30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???