\(x=4\cos\left(6\pi t+\dfrac{\pi}{6}\right)\left(cm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(v=x'=6pi\cdot4\cdot cos\left(6pi\cdot t+\dfrac{pi}{6}+\dfrac{pi}{2}\right)\)

\(=24pi\cdot cos\left(6pi\cdot t+\dfrac{2}{3}pi\right)\)

v'=12pi

=>cos(6pi*t+2/3pi)=1/2

=>6pi*t+2/3pi=pi/3+k2pi hoặc 6pi*t+2/3pi=-pi/3+k2pi

=>6pi*t=-1/3pi+k2pi hoặc 6pi*t=-pi+k2pi

=>t=-1/18+k/3 hoặc t=-1/6+k/3

12 tháng 9 2016

a) \(v_{max}=\omega.A\Rightarrow \omega=\dfrac{10\pi}{5}=2\pi(rad/s)\)

Vậy PT dao động là: \(x=5\cos(2\pi t+\dfrac{\pi}{3})cm\)

b) Áp dụng CT độc lập:

\(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow 5^2=3^2+\dfrac{v^2}{(2\pi)^2}\)

\(\Rightarrow v=\pm 8\pi(cm/s)\)

 

26 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

+ Tần số góc: \(\omega = \frac{2\pi}{T}=\frac{2\pi}{2} = \pi\) (rad/s)
+ Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{31,4}{\pi} = 10 \ (cm)\)
+ t = 0 \(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\) \(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{5}{10}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=10\cos(\pi t + \frac{\pi}{3})\) (cm)
 
21 tháng 9 2020
https://i.imgur.com/D9p6PNf.jpg
22 tháng 9 2020

Combo 3 câu :)

4/ \(f=5Hz\Rightarrow\omega=10\pi\left(rad/s\right)\)

\(A^2=x^2+\frac{v^2}{\omega^2}\Leftrightarrow A=\sqrt{\left(2\sqrt{3}\right)^2+\frac{20^2\pi^2}{10^2\pi^2}}=4\left(cm\right)\)

\(2\sqrt{3}=4\cos\varphi\Rightarrow\varphi=\pm\frac{\pi}{6}\)

\(v=-20\pi< 0\Rightarrow\varphi>0\Rightarrow\varphi=\frac{\pi}{6}\)

\(\Rightarrow x=4\cos\left(10\pi t+\frac{\pi}{6}\right)\)

5/ \(A^2=\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}\Rightarrow A=\sqrt{\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}}=...\)

6/ Áp dụng công thức ở câu 5

13 tháng 9 2018

Pha của dao động: \(\phi=20\pi t + \pi = -\dfrac{\pi}{6}\)

Suy ra li độ của vật: \(x=8\sqrt 2.\cos(-\dfrac{\pi}{6})=4\sqrt 6(cm)\)

12 tháng 7 2019

do x va v là vuông pha nên ta có:

\(\left(\frac{x}{A}\right)^2+\left(\frac{v}{A\omega}\right)^2=1\Rightarrow\left(-\frac{3}{5}\right)^2+\left(\frac{v}{5.2.\pi}\right)^2=1\Rightarrow v=8\pi.\)

2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)