Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn mặt đất làm gốc tính thế năng ( W t = 0), chiều chuyển động của vật trên mặt dốc là chiều dương. Do chịu tác dụng của lực ma sát (ngoại lực không phải là lực thế), nên cơ năng của vật không bảo toàn. Trong trường, hợp này, độ biến thiên cơ năng của vật có giá trị bằng công của lực ma sát:
W 2 - W 1 = (m v 2 /2 + mgz) - (m v 0 2 /2 + mg z 0 ) = A m s
Thay số: v 0 = 0, z 0 = 20 m, v = 15 m/s và z = 0, ta tìm được
A m s = m( v 2 /2 - g z 0 ) = 10( 15 2 /2 - 10.20) = -875(J)
a)Xét tam giác vuông: \(cos\alpha=\dfrac{\sqrt{20^2-10^2}}{20}=\sqrt{3}\)
Độ biến thiên động năng:
\(\Delta A=W_{đC}-W_{đB}=\dfrac{1}{2}m\left(v_C^2-v_B^2\right)=\dfrac{1}{2}mv_C^2\)
Mà \(\Delta A=A_{ms}+A_N+A_P=F_{ms}\cdot s+A_P=-\mu mgscos\alpha+mgh\)
\(\Rightarrow\dfrac{1}{2}mv_C^2=-\mu mgscos\alpha+mgh\Rightarrow\dfrac{1}{2}\cdot1\cdot v_C^2=-0,1\cdot1\cdot10\cdot\sqrt{3}+1\cdot10\cdot10\)
\(\Rightarrow v_C=14,02\)m/s
b)Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p}\)
\(\Rightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v\Rightarrow1\cdot0+1,5\cdot14,02=\left(1+1,5\right)v\)
\(\Rightarrow v=8,412\)m/s
a)Vận tốc vật chân mặt phẳng nghiêng:
\(mgh=\dfrac{1}{2}mv^2\) (Bảo toàn cơ năng)
\(\Rightarrow v=\sqrt{2gh}=\sqrt{2\cdot10\cdot0,45}=3\)m/s
b)Độ cao vật khi \(v'=2\)m/s:
\(mgh'=\dfrac{1}{2}mv'^2\)
\(\Rightarrow h'=\dfrac{1}{2g}\cdot v'^2=\dfrac{2^2}{2\cdot10}=0,2m\)
c)Vận tốc vật khi có độ cao \(z=0,3m\):
\(mgz=\dfrac{1}{2}mv''^2\)
\(\Rightarrow v''=\sqrt{2gz}=\sqrt{2\cdot10\cdot0,3}=\sqrt{6}\)m/s
Công của lực trác dụng lên vật chính là công cản:
\(A_{cản}=W=W_1-W_2=\dfrac{1}{2}mv^2-mgh=\dfrac{1}{2}\cdot60\cdot2^2-60\cdot10\cdot1=-480J\)
Giải theo cách dùng định luật bảo toàn nhé.
Chọn mốc thế năng tại chân mặt phẳng nghiêng.
Độ cao của mặt phẳng nghiêng là: \(h=L\sin30^0=5m\)
Lực ma sát tác dụng lên vật: \(F_{ms}=\mu.N=\mu.mg\cos30^0=\dfrac{\sqrt 3}{2}m\)
Cơ năng khi vật ở đỉnh mặt phẳng nghiêng là: \(W_1=m.g.h=50m\)
Cơ năng khi vật ở chân mặt phẳng nghiêng: \(W_2=\dfrac{1}{2}mv^2\)
Công của ma sát là: \(A_{ms}=F_{ms}L=5\sqrt 3 m\)
Độ giảm cơ năng bằng công của lực ma sát
\(\Rightarrow W_1-W_2=A_{ms}\)
\(\Rightarrow 50m-\dfrac{1}{2}mv^2=5\sqrt 3m\)
\(\Rightarrow 50-\dfrac{1}{2}v^2=5\sqrt 3\)
Tìm tiếp để ra v nhé
Chọn mặt đất làm gốc tính thế năng (Wt = 0), chiều chuyển động của vật trên mặt dốc là chiều dương. Do chịu tác dụng của lực ma sát (ngoại lực không phải là lực thế), nên cơ năng của vật không bảo toàn. Trong trường, hợp này, độ biến thiên cơ năng của vật có giá trị bằng công của lực ma sát:
\(W2-\)\(W1=(\frac{mv^2}{2}+mgz)-(\frac{mv_0^2}{2}+mgz_0)=Ams\)
Thay số: \(v_0\) = 0, \(z_0\) = 20 m, v = 15 m/s và z = 0, ta tìm được
\(Ams=m.\left(\frac{v^2}{2}-gz_0\right)=10[\frac{\left(15\right)^2}{2}-10.20]=875J\)
theo định luật II niu tơn trên mặt phẳng nghiêng AB
\(\overrightarrow{F_{ms}}+\overrightarrow{N}+\overrightarrow{P}=m.\overrightarrow{a}\) (1)
chiếu (1) lên trục Ox phương song song với mặt phẳng nằm nghiêng chiều dương cùng chiều chuyển động
\(sin\alpha.P-\mu.N=m.a\) (2)
chiếu (1) lên trục Oy phương vuông gốc với mặt phẳng, chiều dương hướng lên trên
N=\(cos\alpha.P\) (3)
từ (2),(3)
\(\Rightarrow sin\alpha.g-\mu.g.cos\alpha=a\)
\(\Rightarrow a\approx4,1\)m/s2
vận tốc lúc vật tại B
\(v^2-v_0^2=2as_{AB}\Rightarrow v\approx2,875\)m/s
Ta có Acản= W2 - W1
\(\Leftrightarrow W_{\text{đ}2}+W_{t2}-\left(W_{\text{đ}1}+W_{t1}\right)\)\(\Leftrightarrow\dfrac{1}{2}m.v^2-m.g.Z\) (vì Wt2 và Wđ1 = 0)
thay số vào ta có: 1/2.5.152 - 5.10.20 = -437,5 N