K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,v\left(t\right)=s'\left(t\right)=3t^2-12t-9\)

Vận tốc của vật tại thời điểm t = 2s là: \(v\left(2\right)=3\cdot2^2-12\cdot2+9=-3\left(m/s\right)\)

Vận tốc của vật tại thời điểm t = 4s là: \(v\left(4\right)=3\cdot4^2-12\cdot4+9=9\left(m/s\right)\)

b, Khi vật đứng yên, ta có: 

\(v\left(t\right)=0\Leftrightarrow3t^2-12t+9=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=1\end{matrix}\right.\)

c, Ta có \(a\left(t\right)=s"\left(t\right)=6t-12\)

Gia tốc của vật tại thời điểm t = 4s là \(a\left(4\right)=6\cdot4-12=12\left(m/s^2\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

d, Ta có: Khi t = 1s hoặc t = 3s thì vật đứng yên.

Như vậy, ta cần tính riêng quãng đường vật đi được từng khoảng thời gian \(\left[0;1\right],\left[1;3\right],\left[3;5\right]\)

Từ thời điểm t = 0s đến thời điểm t = 1s, vật đi được quãng đường là: 

\(\left|f\left(1\right)-f\left(0\right)\right|=\left|4-0\right|=4m\)

Từ thời điểm t = 1s đến thời điểm t = 3s, vật đi được quãng đường là:

 \(\left|f\left(3\right)-f\left(1\right)\right|=\left|0-4\right|=4m\)

Từ thời điểm t = 3s đến thời điểm t = 5s, vật đi được quãng đường là:

\(\left|f\left(5\right)-f\left(3\right)\right|=\left|20-0\right|=20m\)

Tổng quãng đường vật đi được trong 5s đầu tiên là: 28m

e,Xét \(a\left(t\right)=0\Leftrightarrow t=2\)

Với \(t\in[0;2)\) thì gia tốc âm, tức là vật giảm tốc.

Với \(t\in(2;5]\) thì gia tốc dương, tức là vật tăng tốc.

23 tháng 8 2018

Đáp án A

Phương trình vận tốc của vật là v(t) = s’(t) = 3t2 – 4t + 3

Phương trình gia tốc là: a = v’(t) = 6t – 4 => a(2) = 8 m/s2.

\(v\left(t\right)=s'\left(t\right)=2\cdot2t+\dfrac{1}{2}\cdot4t^3=2t^3+4t\)

\(a\left(t\right)=2\cdot3t^2+4=6t^2+4\)

\(a\left(4\right)=6\cdot4^2+4=100\)(m/s2)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(v\left(t\right)=s'\left(t\right)=4\left[cos\left(2\pi t-\dfrac{\pi}{8}\right)\right]'\\ =-4\left(2\pi t-\dfrac{\pi}{8}\right)'sin\left(2\pi t-\dfrac{\pi}{8}\right)\\ =-8\pi sin\left(2\pi t-\dfrac{\pi}{8}\right)\)

Vận tốc của vật khi t = 5s là \(v\left(5\right)=-8\pi sin\left(10\pi-\dfrac{\pi}{8}\right)\approx9,6\left(m/s\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(v\left(t\right)=h'\left(t\right)=-9,8t\)

a, Vận tốc của vật tại thời điểm t = 5s là \(v\left(5\right)=-9,8\cdot5=-49\left(m/s\right)\)

b, Khi vật chạm đất thì \(h\left(t\right)=100-4,9t^2=0 \Rightarrow t=\dfrac{10\sqrt{10}}{7}\left(s\right)\)

Khi đó, vận tốc vật chạm đất là: \(v\left(\dfrac{10\sqrt{10}}{7}\right)=-9,8\cdot\dfrac{10\sqrt{10}}{7}=-14\sqrt{10}\left(m/s\right)\)

20 tháng 8 2023

$[v(t) = \frac{ds(t)}{dt} = \frac{d}{dt}(2t^3+4t+1)]$

$[a(t) = \frac{dv(t)}{dt} = \frac{d}{dt}(6t^2 + 4)]$

$[a(t) = 12t]$

Khi (t = 1), ta có:

$[v(1) = 6(1)^2 + 4 = 10 , \text{m/s}]$4

$[a(1) = 12(1) = 12 , \text{m/s}^2]$

Vậy, khi (t = 1), vận tốc của vật là 10 m/s và gia tốc của vật là $12 m/s$

13 tháng 6 2017

Chọn C

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vận tốc tức thời của chuyển động tại \(t = 2\) là:

\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)

Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)

Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\) với \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.Vận tốc trung bình của chuyển động này trên khoảng thời gian \(\left[ {5;t} \right]\) hoặc \(\left[ {t;5} \right]\) được tính bằng công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).a) Hoàn thiện bảng sau về vận tốc trung bình trong những...
Đọc tiếp

Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\) với \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.

Vận tốc trung bình của chuyển động này trên khoảng thời gian \(\left[ {5;t} \right]\) hoặc \(\left[ {t;5} \right]\) được tính bằng công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).

a) Hoàn thiện bảng sau về vận tốc trung bình trong những khoảng thời gian khác nhau. Nêu nhận xét về \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) khi \(t\) càng gần 5. 

b) Giới hạn \(\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) được gọi là vận tốc tức thời của chuyển động tại thời điểm \({t_0} = 5\). Tính giá trị này.

c) Tính giới hạn \(\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}}\) để xác định vận tốc tức thời của chuyển động tại thời điểm \({t_0}\) nào đó trong quá trình rơi của vật.

1
22 tháng 9 2023

a)

\(\begin{array}{l}\begin{array}{*{20}{l}}{\left[ {5;5,1} \right]}\end{array}:t = 5,1 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{1^2} - 4,{{9.5}^2}}}{{5,1 - 5}} = 49,49\\\begin{array}{*{20}{l}}{\left[ {5;5,05} \right]}\end{array}:t = 5,05 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{05}^2} - 4,{{9.5}^2}}}{{5,05 - 5}} = 49,245\\\begin{array}{*{20}{l}}{\left[ {5;5,01} \right]}\end{array}:t = 5,01 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{01}^2} - 4,{{9.5}^2}}}{{5,01 - 5}} = 49,049\\\begin{array}{*{20}{l}}{\left[ {5;5,001} \right]}\end{array}:t = 5,001 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{001}^2} - 4,{{9.5}^2}}}{{5,001 - 5}} = 49,0049\\\begin{array}{*{20}{l}}{\left[ {4,999;5} \right]}\end{array}:t = 4,999 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{999}^2} - 4,{{9.5}^2}}}{{4,999 - 5}} = 48,9951\\\begin{array}{*{20}{l}}{\left[ {4,99;5} \right]}\end{array}:t = 4,99 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{99}^2} - 4,{{9.5}^2}}}{{4,99 - 5}} = 48,951\end{array}\)

 

Ta thấy: \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) càng gần 49 khi \(t\) càng gần 5.

b)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,{{9.5}^2}}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - {5^2}} \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - 5} \right)\left( {t + 5} \right)}}{{t - 5}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + 5} \right) = 4,9\left( {5 + 5} \right) = 49\end{array}\)

c)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,9.t_0^2}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - t_0^2} \right)}}{{t - t_0^2}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - {t_0}} \right)\left( {t + {t_0}} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + {t_0}} \right) = 4,9\left( {{t_0} + {t_0}} \right) = 9,8{t_0}\end{array}\)