K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi hai cạnh góc vuông cần tìm là AB,AC và cạnh huyền là BC(Điều kiện: AB>0; AC>0; BC>0)

Theo đề, ta có: AB:AC=3:4 và AB+AC+BC=24(cm)

\(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)

Đặt \(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=\left(3k\right)^2+\left(4k\right)^2=25k^2\)

hay BC=5k

Ta có: AB+AC+BC=24cm(gt)

\(\Leftrightarrow3k+5k+4k=24\)

\(\Leftrightarrow12k=24\)

hay k=2

⇔AB=6cm; AC=8cm

Vậy: Độ dài hai cạnh góc vuông cần tìm là 6cm và 8cm

Tìm được độ dài các cạnh của tam giác lần lượt là:

6 cm, 8 cm, 10 cm.

9 tháng 5 2019

Tìm được độ dài các cạnh của tam giác lần lượt là:

6 cm, 8 cm, 10 cm.

13 tháng 1 2021

Gọi a,b,c là độ dài 3 cạnh của tam giác đó

Theo đề ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}\)

Đặt: \(\dfrac{a}{3}=\dfrac{b}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)

Tam giác vuông. Áp dụng định lí Pitago ta có: 

a2 + b2 = c2

=> (3k)2 + (4k)2 = c2

=> 9k2 + 16k2 = c2

=> 25k2 = c2

=> c = 5k

Theo đề ta có:

a + b + c = 24

=> 3k + 4k + 5k = 24

=> 12k = 24

=> k = 2

Mà: \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3.2=6\left(cm\right)\\b=4.2=8\left(cm\right)\\c=5.2=10\left(cm\right)\end{matrix}\right.\)

Vậy: Độ dài 3 cạnh của tam giác đó là 6, 8, 10

14 tháng 2 2018

13 tháng 8 2018

Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó

5k +12k + 13k = 30 => k = 1.

Từ đó độ dài cạnh huyền là 13 cm.

3 tháng 2 2017

gọi độ dài 2 cạnh góc vuông đó là A,B(A,B>0)

VÌ 2 CẠNH GÓC VUÔNG TỈ LỆ VỚI 3,4 =>\(\frac{A}{3}\) =\(\frac{B}{4}\)

VÌ CẠNH HUYỀN ĐÓ BẰNG 45 CM =>A+B=45

ÁP DỤNG ĐỊNH LÝ DTSBN TA CÓ 

\(\frac{A}{3}\) = \(\frac{B}{4}\)=...........

4 tháng 2 2019

Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 3k và 4k với k>0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 5k, do đó 5k = 20

=> k = 4.

Từ đó độ dài các cạnh góc vuông lần lượt là 12 cm và 16 cm.

23 tháng 5 2017

Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:

\(\dfrac{b}{7}=\dfrac{c}{24}=k\Rightarrow b=7k,c=24k\)

Theo định lí Py-ta-go:

a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2

nên a = 25k

Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.

15 tháng 1 2018

Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:

b7=c24=k⇒b=7k,c=24kb7=c24=k⇒b=7k,c=24k

Theo định lí Py-ta-go:

a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2

nên a = 25k

Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.