Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 36m + n, 3 <= n <= 35
A + 4 và do vậy cả (n + 4) chia 4 dư 3 và chia hết cho 9. Trong 4 số 9, 18, 27, 36 chỉ có 27 chia 4 dư 3 => n + 4 = 27 => n = 23
=> A = 36m + 23
=> A chia 36 dư 23
*** Học tốt ~ MDia
em giải thế này :
Giải :
Ta có : a : 4 dư 3
\(\Rightarrow\) ( a + 1 ) \(⋮\) 4
\(\Rightarrow\) ( a + 3 + 1) \(⋮\) 4
\(\Rightarrow\) ( a+ 4 ) \(⋮\) 4
a : 9 dư 5\(\Rightarrow\) ( a + 4 ) \(⋮\) 9
\(\Rightarrow\) ( a + 4 ) \(⋮\) 9 và 4
Mà : ( 9 ; 4 ) = 1
\(\Rightarrow\) ( a + 4 ) \(⋮\) 36
\(\Rightarrow\) a : 36 dư 32
Đề chưa đủ dữ kiện nên mình viết cách giải thôi nhé.
\(a\)chia cho \(4\)dư \(5\)nên \(a=4k+5\left(k\inℤ\right)\Rightarrow9a=36k+45\)
\(a\)chia cho 9 dư \(x\)nên \(a=9l+x\left(l\inℤ\right)\Rightarrow8a=72l+8x\)
\(\Rightarrow a=36\left(k-2l\right)+45-8x\)
Nếu \(0\le45-8x< 36\)thì số dư của \(a\)cho \(36\)là \(45-8x\).
Trường hợp ngược lại thì ta cộng (hoặc trừ) thêm một số nguyên lần \(36\)để tổng đó thuộc \(\left[0,35\right]\)thì đó sẽ là số dư của \(a\)cho \(36\).
Theo bài ra ta có:
A=4a+3
=17b+9 (a,b,c \(\in N\))
=19c+13
Mặt khác: A+25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 chia hết cho 4;17;19 (vì có chứa thừa số 4;17 và 19). Mà (4;17;19) = 1 \(\Rightarrow\)A+25 chia hết cho 1292
\(\Rightarrow\)A+25=1292k (\(k\in\)N*)
\(\Rightarrow\)A=1292k - 25 = 1292k - 1292 + 1267 = 1292(k-1)+1267
Do1267<1292 nên 1267 là số dư trong phép chia a cho 1292
A = 36m + n, 3 <= n <= 35
A + 4 và do vậy cả (n + 4) chia 4 dư 3 và chia hết cho 9. Trong 4 số 9, 18, 27, 36 chỉ có 27 chia 4 dư 3 => n + 4 = 27 => n = 23
=> A = 36m + 23
=> A chia 36 dư 23
cảm ơn ạ