K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

a, cơ năng tại các vị trí

cb \(W=\dfrac{1}{2}mv_0^2\)

30 độ \(W_{30}=mgl\left(1-cos30^o\right)\)

bảo toàn W

\(\Rightarrow v_0=\sqrt{2gl\left(1-cos30^o\right)}\approx1,637\left(m/s\right)\)

b,\(\alpha=40\)

\(v=\sqrt{2gl\left(1-cos40\right)}\approx2,16\left(m/s\right)\)

định luật II Niuton ta có

\(\overrightarrow{P}+\overrightarrow{T}=m.\overrightarrow{a}\)  chiếu lên phương hướng tâm

\(T-P=m.a_{ht}\)

\(\Leftrightarrow T=P+m.\dfrac{v^2}{l}=mgcos40+m.\dfrac{v^2}{l}=...\)

14 tháng 8 2020

a) Khi dây treo nghiêng góc α=300 so với phương thẳng đứng, vật M chịu tác dụng của các lựcnhư hình vẽ. Do gia tốc có phương ngang nên:\(T.\cos30^0=mg\) (1)

Mặt khác, xét theo phương hướng tâm MO ta có:

\(T-mg\cos30^0=\frac{mv^2}{l}\left(2\right)\) (Với v là vận tốc của vật tại M).

Từ (1) và (2) suy ra:\(v^2=\frac{gl}{2\sqrt{3}}\) (3)

Áp dụng ĐLBT cơ năng cho hệ khi vật ở vị trí M và khi vật ở vị trí cân bằng ta được:

v02=v2+2gl(1 – cos300) = \(\frac{12-5\sqrt{3}}{6}gl\rightarrow\)v0 ≈ 2,36m/s

b) Áp dụng ĐLBT cơ năng cho hệ khi vật ở vị trí \(\alpha\)=40o và khi vật ở vị trí cân bằng ta được:

\(v_0^2=v^2+2gl\left(l-\cos40^0\right)\rightarrow v=\sqrt{v_0^2-2gl\left(l-cos40^0\right)}\approx0,94\left(\frac{m}{s}\right)\)

Xét theo phương sợi dây ta có:

\(T=mgcos40^0+\frac{mv^2}{l}=0,1.10.cos40^0+\frac{0,1.0,94^2}{1}=0,86\left(N\right)\)

7 tháng 5 2019

a) Chọn gốc thế năng trọng trường tại C ( Hình 92).

Theo định luật bảo toàn cơ năng:  W A = W M

Vận tốc của m tại một điểm trên quỹ đạo ( ứng với góc lệch α  )

 

Vận tốc v sẽ đạt cực đại khi cos α = 1  hay α = 0 .

b) Phương trình chuyển động của m:  P → + T → = m a →

 

Chiếu phương trình lên phương bán kính đi qua M, chiều dương hướng vào điểm treo:

Thay  vào phương trình của T ta được:

Lực căng dây tại M ( ứng với góc lệch:  T = m g 3 cos α - 2 cos α 0

Lực căng T đạt cực đại khi cos α = 1 hay  α = 0 : T = m g 3 - 2 cos α 0

20 tháng 7 2016

a)  \(h=l-l\cos\alpha_0=1m\)
\(W=W_d+W_t=mgh=1J\)
b) Tính lực căng của dây treo khi vật qua vị trí cân bằng 

Hai lực tác dụng vào vật: \(\overrightarrow{P},\overrightarrow{T}\)
Hợp lực: \(\overrightarrow{F}=\overrightarrow{P}+\overrightarrow{T}=m.\overrightarrow{a_{ht}}\)

\(m\frac{v^2_0}{l}=-P+T\)

\(T=m\frac{v^2_0}{l}+mg\)
\(T=3mg-2mg\cos\alpha_0=2N\)

30 tháng 4 2019

bạn ơi có phải tam giác vuông đâu mà dung h=l-lcosanpha

15 tháng 2 2016

Vận tốc của vật ở vị trí góc bất kỳ là \(v = \sqrt{2gl(\cos \alpha - \cos \alpha_0)}\)

Lực căng dây tại một vị trí bất kỳ là: \(\tau = mg(3\cos \alpha - 2 \cos \alpha_0)\).

Bạn thay số vào là thu được kết quả.

2 tháng 2 2016

Vận tốc: \(v=\sqrt{2gl(\cos\alpha-\cos\alpha_0)}\)

Lực căng dây: \(T=mg(3\cos\alpha-2\cos\alpha_0)\)

2 tháng 2 2016

bạn có thể cho mình biết là tại sao v và lực căng dây lại được tính như vậy được ko ?

20 tháng 5 2017

Đáp án B

- Chọn mốc thế năng là vị trí va chạm

- Xét thi điểm ngay khi va chạm mềm giữa viên đạn và bao cát là hệ kín

- Áp dụng định luật bảo toàn động lượng của hệ

Sau khi cắm vào bao cát h chuyn động lên đến vị trí dây treo lch với phương thng đứng một góc ln nhất  ng với thế năng lớn nhất động năng bằng không vậy ta có:

24 tháng 12 2019

18 tháng 12 2017

Đáp án B

- Chọn mốc thế năng là vị trí va chạm

- Xét thời điểm ngay khi va chạm mềm giữa viên đạn và bao cát là hệ kín

- Áp dụng định luật bảo toàn động lượng của hệ.

- Vận tốc của đạn và bao cát ngay sau va chạm là:

- Cơ năng hệ lúc sau (ngay sau khi va chạm):

Sau khi cắm vào bao cát hệ chuyển động lên đến vị trí dây treo lệch vi phương thẳng đứng một góc lớn nhất ứng với thế năng lớn nhất động năng bằng không vậy ta có:

- Bảo toàn cơ năng cho con lắc sau va chm, ta được:

21 tháng 4 2019

Đáp án B

Theo điều kiện cân bằng năng lượng   W A = W B