K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.

suy ra tg dự định đi hết quãng đg AB là 100/x  ( h)

1/3 quãng đg đầu xe đi hết  : 100x/3  (h)

2/3 quãng đg sau xe đi với vận tốc  (x + 10) km/h hết 200(x+10)/3 (h)

theo bài ra ta có pt  :

\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)

gpt ta tìm x 

5 tháng 2 2018

A B 50km 2h 30p x km/h x+2 km/h

Đổi \(30p=\frac{1}{2}h\)

Gọi vận tốc dự định của người đó là x (km/h) (x > 0)

\(\Rightarrow\) thời gian dự định của người đó là : \(t_{dđ}=\frac{S_{AB}}{v_{dđ}}=\frac{50}{x}\) (h)

Quãng đường ng đó di chuyển được sau 2 giờ là : \(2x\) (km)

\(\Rightarrow\)Quãng đường còn lại là \(50-2x\) (km)

Người đó phải tăng vận tốc thêm 2km/h trên quãng đường còn lại để đến B đúng dự định nên ta có PT :

\(\frac{50}{x}=2+\frac{1}{2}+\frac{50-2x}{x+2}\)

\(\Leftrightarrow\frac{50}{x}=\frac{5}{2}+\frac{50-2x}{x+2}\)

 \(\Leftrightarrow\frac{50}{x}=\frac{5x+10+100-4x}{2\left(x+2\right)}\Leftrightarrow\frac{50}{x}=\frac{x+110}{2x+4}\)

\(\Leftrightarrow x^2+110x-100x-200=0\)

\(\Leftrightarrow x^2+10x-200=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+20\right)\Rightarrow\orbr{\begin{cases}x=10\\x=-20\left(l\right)\end{cases}}\)

Vậy vận tốc ban đầu của xe là 10 km/h

18 tháng 6 2018

Quãng đường AB dài là:

   60 x 2 = 120 (km)

Nếu người đó đi với vận tốc 40km/h thì  cần thời gian là:

120: 40 = 3 giờ 

Gọi vận tốc dự định của ô tô là : v 

Thời gian ô tô đi quãng đường AB với vận tốc dự định là \(v=\frac{120}{t}\) (giờ)

Gọi thời gian dự định của ô tô đi quãng đường AB là : t' 

Đổi : \(3'=\frac{1}{20}\)giờ (1)

Thực tế, thời gian ô tô đi quãng đường AB (không tính thời gian dừng lại của xe) là:

\(t'=\frac{120}{2v}+\frac{120}{2\left(v+2\right)}=\frac{60}{v}+\frac{60}{v+2}\)(giờ) (2)

Từ (1) ; (2) ta có pt sau : \(\frac{120}{v}=\frac{60}{v}+\frac{60}{v+2}+\frac{1}{20}\Leftrightarrow v=48\)

Vậy vận tốc dự định là : 48 km/giờ

21 tháng 5 2020

Gọi vận tốc theo dự định là x ( km/h, >0) 

Nửa quãng đường sau dài là: 120 : 2 = 60 (km) 

Tính từ thời điểm bắt đầu đi nửa quãng đường sau

+) Theo dự đinh: Thời gian đi sẽ là: \(\frac{60}{x}\)(h) 

+) Theo thực tế:

Vận tốc là: x + 2 (km/h) 

Thời gian đi là:  \(\frac{60}{x+2}\left(h\right)\)

Đổi 3 phút = 0,05 (h) 

Theo bài ra ta có phương trình: \(\frac{60}{x+2}+0,05=\frac{60}{x}\)

<=> \(6000x+5\left(x+2\right)x=6000\left(x+2\right)\)

<=> x = 48 ( tm ) hoặc x = -50 loại 

Vậy vận tốc dự định là 48km/h

Gọi vận tốc ban đầu của người đó là x(km/h)

(ĐIều kiện: x>0)

Thời gian dự kiến của người đó sẽ đi hết quãng đường là \(\dfrac{36}{x}\left(h\right)\)

Độ dài nửa quãng đường còn lại là: 36*1/2=18(km)

Thời gian đi nửa quãng đường đầu tiên là \(\dfrac{18}{x}\left(giờ\right)\)

vận tốc của người đó ở 18km còn lại là x+2(km/h)

Thời gian người đó đi hết 18km còn lại là \(\dfrac{18}{x+2}\left(h\right)\)

Theo đề, ta có phương trình:

\(\dfrac{18}{x}+\dfrac{18}{x+2}+\dfrac{3}{10}=\dfrac{36}{x}\)

=>\(\dfrac{18}{x+2}-\dfrac{18}{x}=-\dfrac{3}{10}\)

=>\(\dfrac{6}{x}-\dfrac{6}{x+2}=\dfrac{1}{10}\)

=>\(\dfrac{6x+12-6x}{x\left(x+2\right)}=\dfrac{1}{10}\)

=>\(\dfrac{12}{x\left(x+2\right)}=\dfrac{1}{10}\)

=>x(x+2)=120

=>\(x^2+2x-120=0\)

=>\(\left(x+12\right)\left(x-10\right)=0\)

=>\(\left[{}\begin{matrix}x+12=0\\x-10=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-12\left(loại\right)\\x=10\left(nhận\right)\end{matrix}\right.\)

Vậy: Vận tốc ban đầu là 10km/h

Thời gian xe lăn bánh trên đường là \(\dfrac{36}{10}=3,6\left(giờ\right)\)