K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

Trong \(\Delta\)ABC cóA= \(\overset{ }{ }\)900 (gt)

\(\tan\)C=\(\dfrac{AB}{AC}\) (Định nghĩa tỉ số lượng giác)

T/s:\(\tan\) 270 =\(\dfrac{AB}{300}\)

\(\Rightarrow\) AB=\(\tan\)270 *300

\(\approx\) 152,85 m

6 tháng 10 2018

bạn lấy tan 270 *300m là ra kết quả này, nó chỉ ra xấp xỉ thôi bn

2 tháng 4 2022

Gọi AB là chiều cao của ngọn hải đăng (A là chân của ngọn hải đăng), AC là độ dài bóng của ngọn hải đăng trên mặt đất và \(\widehat{C}\)là góc hợp bởi tia nắng mặt trời với mặt đất.

Khi đó \(\Delta ABC\)vuông tại A \(\Rightarrow AB=AC.\tan C=20.\tan35^o\approx14\left(m\right)\)(đáp án ra \(14,00415076...\)mà đề yêu cầu làm tròn đến chữ số thập phân thứ nhất tức đáp án sẽ là \(14,0\)hay \(14\))

Vậy chiều cao của ngọn hải đăng là khoảng \(14m\)

2 tháng 4 2022

Bạn vào thống kê hỏi đáp của mình xem nhé.

11 tháng 12 2023

Gọi AH là độ cao của ngọn hải đăng, BC là độ dài quãng đường con thuyền đi được giữa hai lần quan sát.

Theo đề, ta có: AH=120m; \(\widehat{B}=20^0;\widehat{C}=30^0\)

Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)

=>\(HB=\dfrac{120}{tan20}\simeq329,7\left(m\right)\)

Xét ΔAHC vuông tại H có \(tanC=\dfrac{AH}{HC}\)

=>\(\dfrac{120}{HC}=tan30\)

=>\(HC=\dfrac{120}{tan30}\simeq207,85\left(m\right)\)

BC=BH+CH=329,7+207,85=537,55(m)

Vậy: Con thuyền đã được 537,55m giữa hai lần quan sát

loading...

13 tháng 10 2021

chiếc thuyền đang đúng cách chân hải đăng \(\approx\)63,40mhehe

6 tháng 11 2021

Gọi:

AB là chiều cao tháp

AC là khoảng cách từ chân tháp đến thuyền

Góc C là góc hạ

\(tanC=\dfrac{AB}{AC}\Rightarrow AC=AB:tanC=28:tan20^0\simeq76,9\left(m\right)\)

20 tháng 7 2019

Chiều cao ngọn hải đăng là cạnh góc vuông đối diện với góc 0o42’, khoảng cách từ tàu đến chân ngọn hải đăng là cạnh kề với góc nhọn.

Vậy khoảng cách từ tàu đến chân ngọn hải đăng là:

80.cotg0o42’ ≈ 6547,76 (feet) ≈ 1,24 (hải lí)