K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phần đường sau khi ô tô tăng tốc là: 2/3 ( quãng đường)
Sau khi tăng vận tốc lên 25% thì vận tốc so với lúc đầu là 125 % = 5/4
Trên cùng một quãng đường, vận tốc và thời gian là 2 đại lượng tỉ lệ nghịch. Nên sau khi tăng tốc, tỉ số thời gian đi trên 2/3 quãng đường còn lại so với dự định là 4/5.
Thời gian đi 2/3 quãng đường còn lại là:
10 . 4 = 40 phút.
Vì tỉ số thời gian là 5/4 nên Đi 1/3 quãng đường đầu tiên hết số thời gian là:
(40: 2) x 5/4 = 25 phút
Thời gian thực tế ô tô đi từ A đến B là: 65 phút

20 tháng 2 2019

20% mà bạn.với lại mk ko đc dùng cách đó

7 tháng 4 2023

Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)

vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \frac{6}{5}v56​v

Đổi 10' = \frac{1}{6}h61​h

Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)

thời gian ô tô đi trong nửa quãng đường còn lại là: t - \frac{1}{6}61​

Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}6t​=5t−61​​=6−5t−(t−61​)​=61​

\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}⇒{t=61​.6=1t−61​=61​.5=65​​

Vậy thời gian ô tô đi từ A -> B là:

t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)t+(t−61​)=1+65​=611​(h)

4 tháng 12 2016

kết quả là : 2H45'

tk nha bạn

thank you bạn

6 tháng 7 2018

Gọi vận tốc của ô tô nửa đoạn đường đầu là x, nửa đoạn đường cuối là y (y > x > 0)

Theo đề bài ta có: y = 20%x + x = \(\frac{1}{5}\)x + x = \(\frac{6}{5}\)x

\(\frac{x}{y}\)=\(\frac{5}{6}\) (1)

Gọi thời gian đi nửa đoạn đường đầu ô tô đi là t1, thời gian nửa đoạn đường sau là t2 (t1 > t2 > 0)

=> t1 - t2 = \(\frac{10}{60}\)=\(\frac{1}{6}\)(h)

Ta có: x.t1 = y.t2 (cùng bằng \(\frac{1}{2}\) quãng đường AB)

\(\frac{x}{y}\)=\(\frac{t2}{t1}\) kết hơp với (1) \(\frac{t2}{t1}\)=\(\frac{5}{6}\)\(\frac{t2}{5}\)=\(\frac{t1}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{t2}{5}\)=\(\frac{t1}{6}\)=\(\frac{t1-t2}{6-5}\)=\(\frac{1}{6}\)

\(\hept{\begin{cases}t2=\frac{1}{6}.5=\frac{5}{6}\\t1=\frac{1}{6}.6=1\end{cases}}\)

Vậy thời gian thực tế ô tô đi hết quãng đường AB là:

t1 + t2 = 1 + \(\frac{5}{6}\)=\(\frac{11}{6}\)= 1h50'