Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài chiều rộng lần lượt là a ; b ( a > b > 0 )
Theo bài ra ta có hệ \(\left\{{}\begin{matrix}2\left(a+b\right)=38\\\left(a+3\right)\left(b-1\right)=ab+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12\\b=7\end{matrix}\right.\)(tm)
Diện tích ban đầu là 12.7 = 84m2
Vậy ...
Gọi chiều dài chiều rộng lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có pt \(\left\{{}\begin{matrix}a-b=8\\\left(a-4\right)\left(b+2\right)=ab-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=8\\2a-4b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14\\b=6\end{matrix}\right.\left(tm\right)\)
Diện tích miếng đất là 14 . 6 = 84 m^2
Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a và b.
\(\Rightarrow2\left(ab\right)=288\)
\(\Rightarrow a+b=144\)
Nếu tăng chiều rộng gấp 2 lần và giảm chiều dài đi 3 lần thì chu vi hình chữ nhật là
\(2\left(a:3+2b\right)\)
\(\Rightarrow2\left(a+b\right)-2\left(a:3+2b\right)=42\)
\(\Leftrightarrow\frac{4}{3}a-2b=42\)
Kết hợp 2 phương trình ta tìm được:
\(\left\{{}\begin{matrix}a=99\\b=45\end{matrix}\right.\)
Vậy........................
Gọi chiều rộng và chiều dài hình chữ nhật là x, y ta có
2(x +y) = 288 (1)
Chiều rộng chiều dài lúc sau là: 2x, \(\frac{y}{3}\) ta có:
2(2x + \(\frac{y}{2}\)) = 288 - 42 = 246 (2)
Từ (1) và (2) ta có hệ: \(\left\{\begin{matrix}2\left(x+y\right)=288\\2\left(2x+\frac{y}{3}\right)=246\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=45\\y=99\end{matrix}\right.\)
Nửa chu vi mảnh đất: \(25-x\) (m)
Gọi chiều rộng mảnh đất là x (m) với 0<x<50
Chiều dài mảnh đất là: \(25-x\) (m)
Chiều dài khi tăng 2 lần: \(2\left(25-x\right)\)
Chiều rộng khi giảm 5m: \(x-5\)
Nửa chu vi mới của mảnh đất là: \(2\left(25-x\right)+x-5=45-x\)
Do chu vi mảnh đất tăng 20m nên ta có pt:
\(2\left(45-x\right)=50+20\)
\(\Rightarrow x=10\left(m\right)\)
Chiều dài mảnh đất là: \(25-10=15\left(m\right)\)
Diện tích: \(15.10=150\left(m^2\right)\)
Gọi x(m) là chiều rộng của hcn ⇒ 4x (m) là chiều dài của hcn.
Theo đề: \((x-2).(2.4x)=x.4x+20\Leftrightarrow x^2-4x-5=0\Leftrightarrow\left[\begin{array}{} x=5\\ x=-1(loại) \end{array} \right.\)
Vậy mảnh đất hcn có chiều rộng là 5m, chiều dài là 4.5=20m
Gọi chiều rộng ban đầu là x
Chiều dài ban đầu là 3x
Theo đề, ta có phương trình:
\(\left(x+3\right)\left(3x-6\right)=3x^2+18\)
\(\Leftrightarrow3x^2-6x+9x-18=3x^2+18\)
\(\Leftrightarrow3x=36\)
hay x=12
Vậy: Kích thước ban đầu là 12m; 36m
Gọi a là chiều dài
Gọi b là chiều rộng
Vì một miếng đất HCN có chu vi 70m nên ta có pt : 2( a + b ) = 70 \(\Leftrightarrow\) a + b = 35 ( 1 )
Vì giảm chiều dài 5 lần và tăng chiều rộng 2 lần thì chu vi giàm 20m nên ta có pt :
\(2.\left(\frac{a}{5}+2b\right)=70-20\)
\(\Leftrightarrow\frac{a}{5}+2b=25\)
\(\Leftrightarrow\frac{a+10b}{5}=\frac{125}{5}\)
\(\Leftrightarrow a+10b=125\) ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ pt :
\(\hept{\begin{cases}a+b=35\\a+10b=125\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=25\\b=10\end{cases}}\) ( cái này mình chỉ ghi kết quả thôi , bạn tự trình bày cách giải nha )
Vậy : chiều dài là 25m
: chiều rộng là 10m
25m 25m 10m