Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi độ dài cạnh góc vuông thứ nhất và hai lần lượt là $a,b$ (m)
Theo bài ra ta có:
$ab=20.2=40$
$\sqrt{(a+2)^2+(b+5)^2}=\sqrt{a^2+b^2}+100$
$\Rightarrow (a+2)^2+(b+5)^2=a^2+b^2+10000+200\sqrt{a^2+b^2}$
$\Rightarrow 4a+10b=10^4-29+200\sqrt{a^2+b^2}$ (điều này là vô lý)
Đề có vẻ không đúng. Bạn xem lại
Cho mảnh đất hình chữ nhật có diện tích 360m2. Nếu tăng chiều rộng thêm 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi. Tính các kích thước của mảnh đất lúc đầu
trả lời
gọi chiều dài là a ( a>0)
chiều rộng là b ( b>0)
diện tích ban đầu là
ab =360 (1)
tăng chiều rộng thêm 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi
=> (a-6)(b+2) =ab
<=> ab + 2a -6b -12 =ab
<=> 2a-6b=12
<=> a-3b=6 (2)
giải hệ pt gồm 1 và 2
=> a= 36 và b=10
vậy chieu dài là 36 , rộng : 10
Gọi chiều dài và chiều rộng lần lượt là \(x,y\left(50>x>y\right)\)\(\left(m\right)\)
Tổng chiều dài và rộng là \(x+y=\dfrac{100}{2}=50m\left(1\right)\)
Diện tích ban đầu: \(S=x\cdot y\left(m^2\right)\)
Nếu giảm dài 3m và tăng rộng 4m thì S mới tăng \(48m^2\)
\(\Rightarrow\left(x-3\right)\cdot\left(y+4\right)=x\cdot y+48\)
\(\Rightarrow4x-3y=60\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\end{matrix}\right.\)
\(S_{bđ}=30\cdot20=600m^2\)
Gọi chiều dài chiều rộng lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ
\(\left\{{}\begin{matrix}2\left(a+b\right)=100\\\left(b+4\right)\left(a-3\right)=ab+48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=50\\-3b+4a=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)(tm)
Diện tích ban đầu là ab = 600 m2
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề, ta có: ab=360 và (a+2)(b-6)=ab
=>-6a+2b-12=0 và ab=360
=>-6a+2b=12
=>3a-b=6 và ab=360
=>b=3a-6 và a(3a-6)=360
=>a=12; b=3*12-6=30
=>C=(12+30)*2=84m