Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều dài hình chữ nhật là:
\(\sqrt{5^2-1^2}=5\left(m\right)\)
Diện tích hình chữ nhật là:
\(5\cdot1=5\left(m^2\right)\)
Đáp số: \(5m^2\)
Gọi a (m), b (m) lần lượt là chiều dài và chiều rộng của mảnh vườn hình chữ nhật (a > 6, b > 0)
Diện tích mảnh vườn là: a.b (m2)
Chiều dài hơn chiều rộng 6m nên ta có: a – b = 6
Áp dụng định lý Pitagore, ta có bình phương độ dài đường chéo hình chữ nhật là a2 + b2
Theo đề ra ta có: a2 + b2 = 2,5ab
mà a – b = 6 Û a = b + 6. Thay vào a2 + b2 = 2,5ab ta được :
(b + 6)2 + b2 = 2,5b.(b + 6)
⇔ 2b2 +12b + 36 = 2,5b2 +15b
⇔ 0,5b2 + 3b - 36 = 0 Û b2 + 6b - 72 = 0
Giải ra ta được b = 6 ; a = b + 6 = 12
Diện tích mảnh vườn là S = a.b = 12.6 = 72 (m2)
Vậy mảnh vườn hình chữ nhật có diện tích 72m2.
Gọi chiều dài hình chữ nhật là x ( m ) ( x>7 )
=> Chiều rộng hình chữ nhật đó là: x-7 ( m )
Theo đề bài ta có pt:
\(x\left(x-7\right)=114\)
\(\Leftrightarrow x^2-7x-114=0\)
\(\Delta=\left(-7\right)^2-4.-114=505>0\)
\(\left\{{}\begin{matrix}x_1=\dfrac{7+\sqrt{505}}{2}\left(tm\right)\\x_2=\dfrac{7-\sqrt{505}}{2}\left(ktm\right)\end{matrix}\right.\)
=> Chiều rộng hình chữ nhật là: \(\dfrac{7+\sqrt{505}}{2}-7=\dfrac{-7+\sqrt{505}}{2}\left(m\right)\)
Gọi chiều dài của mảnh đất đó là x ( m; x > 20 ) và chiều rộng của mảnh đất là y ( m; x>y>0 ).
- Theo bài ra, ta có hệ pt:
\(\hept{\begin{cases}x-y=20\\xy=125\end{cases}}\)<=> \(\hept{\begin{cases}x=20+y\\\left(y+20\right)y=125\end{cases}}\)
<=>\(\hept{\begin{cases}x=20+y\\y^2+20y=125\end{cases}}\) <=> \(\hept{\begin{cases}x=20+y\\y^2+20y-125=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=20+y\\\left(y+25\right)\left(y-5\right)=0\end{cases}}\) <=> \(\hept{\begin{cases}x=20+y\\y=-25hoacy=5\end{cases}}\)
<=>\(\hept{\begin{cases}x=20+y\\y=5\end{cases}}\)( vì y > 0 ) <=>\(\hept{\begin{cases}x=25\\y=5\end{cases}}\)(TM)
Vậy CD của mảnh đất là 25m , CR của mảnh đất là 5m.
- Năm nay em mới lớp 8 nên chỗ nào chưa được mong chị thông cảm cho em nhé!
Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)
=> chiều dài mảnh đất là x+6 (m)
Theo định lý Pytago ta có độ dài đường chéo là:
√x2+(x+6)2=√2x2+12x+36(m)⇒√2x2+12x+36=√654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒⎡⎣x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)x2+(x+6)2=2x2+12x+36(m)⇒2x2+12x+36=654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒[x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)
Vậy diện tích mảnh đất là 112m2
Lời giải:
Gọi chiều rộng hình chữ nhật là $a$ m thì chiều dài là $a+6$ m
Bình phương độ dài đường chéo: $a^2+(a+6)^2$ theo định lý Pitago
Theo bài ra ta có:
$a^2+(a+6)^2=10(a+a+6)$
$\Leftrightarrow 2a^2+12a+36=20a+60$
$\Leftrightarrow a^2-4a-12=0$
$\Leftrightarrow (a-6)(a+2)=0$
Vì $a>0$ nên $a=6$
Diện tích hình chữ nhật: $a(a+6)=6.12=72$ (m2)
gọi x là chiều dài của HCN —» chiều rộng HCN = x - 7
Theo Định lý pitago ta có :
13² = (x - 7 )² + x²
<=> 169 = x² - 14x + 49 + x²
<=> 120 = 2x² - 14x
<=> 2x² - 14x - 120 = 0
bấm máy dc : x= -5 ( loại khoảng cách không âm ) va x = 12 (nhận) suy ra chiều rộng bằng 12 - 7 = 5m
Vậy chiều dài bằng 12 và chiều rộng bằng 5