Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng là 6 m và diện tích hình chữ nhật bằng 280 m . Tinh chiều dài và chiều rộng của mảnh đất.
Giải
Gọi x ( m ) là chiều dài của mảnh đất hình chữ nhật ( x ∈ N* )
Suy ra chiều rộng của mảnh đất hình chữ nhật là: x - 6 ( m )
Vì diện tích mảnh đất hình chữ nhật là 280 m2 nên ta có phương trình:
x ( x - 6 ) = 280
⇔ x2 - 6x - 280 = 0
Ta có: △ = b'2 - ac = ( -3 )2 - 1 . ( -280 ) = 289
Vì △ = 289 > 0 nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b'+\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)+\sqrt{289}}{1}=20\) ( nhận )
\(x_2=\dfrac{-b'-\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)-\sqrt{289}}{1}=-14\) ( loại )
Vậy chiều dài của mảnh đất hình chữ nhật là: 20 ( m )
Suy ra chiều rộng của mảnh đất hình chữ nhật là: 20 - 6 = 14 ( m )
Giải:
Gọi chiều dài của mảnh đất là a (m) (a>6)
Do chiều dài lớn hơn chiều rộng là 6m nên chiều rộng của mảnh đất là: a-6 (m)
Vì diện tích khu vườn là 280m nên ta có phương trình: a.(a-6)=280
<=> a^2-6a-280=0 (1)
Xét: Delta= (-6)^2 -4.(-280)=1156>0 => phương trình (1) luôn có 2 nghiệm phân biệt:
a1= 20 (thỏa mãn) và a2=-14 (loại)
Vậy chiều dài mảnh vườn là 20m và chiều rộng mảnh vườn là 20-6=14m
Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)
Diện tích ban đầu của hình chữ nhật là:
\(ab\left(m^2\right)\)
Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:
\(\left(a-2\right)\cdot2b=ab+240\)
\(\Leftrightarrow2ab-4b=ab+240\)
\(\Leftrightarrow ab-4b=240\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m
Gọi chiều dài mảnh vườn là: `x (m)` `ĐK: x > 0`
`=>` Chiều rộng mảnh vườn là: `x-5 (m)`
`=>` Diện tích mảnh vườn là: `x (x-5) (m^2)`
Vì nếu tăng chiều rộng gấp đôi thì diện tích mảnh vườn tăng `300 m^2` nên ta có ptr:
`2(x-5).x=x(x-5)+300`
`<=>2x^2-10x=x^2-5x+300`
`<=>x^2-5x-300=0`
`<=>x^2-20x+15x-300=0`
`<=>(x-20)(x+15)=0`
`<=>` $\left[\begin{matrix} x=20(t/m)\\ x=-15(ko t/m)\end{matrix}\right.$
Vậy chiều dài mảnh vườn là `20 m`, chiều rộng là `20-5=15 m`
Chiều dài mảnh đất hình chữ nhật là:
15 x 2 = 30 (m)
Diện tích mảnh đất hình chữ nhật là:
15 x 30 = 450 (m2)
Đáp số: 450 m2
Chiều dài là :
15 x 2 = 30 ( m )
S là :
30 x 15 = 450 ( m2 )
Đ/S: 450 m2