Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số học sinh của khối đó
Theo đề, ta có: a chia cho 2;3;4;5 đều thiếu 1 người
\(\Rightarrow\left(a-1\right)⋮2;3;4;5\)
\(\Rightarrow\left(a-1\right)\in BC\left(2;3;4;5\right)\)
Mà \(a< 300;a⋮7\) (xem lại đề nha bạn)
\(\Rightarrow a-1=300\)
\(\Rightarrow a=301\)
Vậy khối đó có 301 học sinh
Gọi số học sinh là : a ( a \(\in\)N * )
Theo bài học sinh khối đó khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thì đều thừa 1 người
=> a - 1 chia hết cho 2, 3 , 4 , 5 , 6
=> a - 1 \(\in\)BC ( 2,3,4,5,6 )
Mà BCNN ( 2,3,4,5,6 ) = 60
=> BC ( 2,3,4,5,6 ) = B ( 60 ) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; ...}
=> a - 1 = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; ...}
=> a = { 1 ; 61 ; 121 ; 181 ; 241 ; 301 ; ...}
Mà số học sinh khi xếp 7 hàng thì vừa đủ và chưa đến 300
hay a chia hết cho 7 và a < 300
=> a =
gọi số hs khối đó là a
khi đó (a+1)E bc(2,3,4,5,6) a<300
bc(2,3,4,5,6)=244
a=244+1=245
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Ta có số học sinh lớp đó là x thì x+1 chia hết cho
2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240(chú ý bội này phải dưới 300 hs)
Và +x+1=60
x=59(0 chia hết cho 7 loại)
+ x+1=120
x=119(chia hết cho 7 được)
+x+1=180
x=179(0 chia hết cho 7 loại)
+x+1=240
x=239(0 chia hết cho 7 loại)
Vậy một khốihọc sinh có 119 hoc sinh
Tính ước chung lớn nhất của 2 ; 3 ; 4 ; 5 ; 6 : \(ƯC\left(2;3;4;5;6\right)=\left\{60;120;180;240;...\right\}\)
Vì khi xếp hàng 2 ; 3 ; 4 ; 5 ; 6 đều thiếu một người tức là khi chia cho các số đó thì thiếu 1 để có phép chia hết
Mà số hs chưa đến 300 nên các số đó là \(\left\{59;119;179;239;299\right\}\)
Mà xếp hàng 7 thì vừa nên số hs chia hết cho 7. Ở đây có mỗi 119 chia hết cho 7
=> Vậy số học sinh là 119
gọi số hs là a
ta có :
a chia 2,3,4,5,6 đều thiếu 1
=>a+1 chia hết cho 2,3,4,5,6
=>a+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
5=5
6=2.3
=>BCNN(2,3,4,5,6)=22.3.5=60
=>a+1 thuộc B(60)=0;60;120;180;240;300...}
=>a thuộc {59;119;179;239;299...}
mà a<300 và a chia hết cho 7
=>a=119
Giải
Ta có số học sinh lớp đó là x thì x+1 chia hết cho 2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240﴾chú ý bội này phải dưới 300 hs﴿
Và +x+1=60
x=59﴾0 chia hết cho 7 loại﴿
+ x+1=120 x=119﴾chia hết cho 7 được﴿
+x+1=180 x=179﴾0 chia hết cho 7 loại﴿
+x+1=240 x=239﴾0 chia hết cho 7 loại﴿
Vậy số học sinh của lớp này là:119 hoc sinh Đáp số:119 học sinh
Tick nha !!!
Gọi số học sinh là a (0<a<300)
Ta có a+1 là bội chung của 2,3,4,5,6 và 1<a+1<301.Do a\(⋮\) 7 ta tìm được a+1=120 nên a=119.Số học sinh la 119 người
Gọi số học sinh của khối là x.
Khi xếp x học sinh vào hàng 2;3;4;5;6 đều thiếu 1 người nghĩa là x chia cho 2;3;4;5;6 dư 1.Xếp hàng 7 thì vừa đủ có nghĩa là x chia hết cho 7.
=> x+1\(⋮\) 2;3;4;5;6
=> x+1\(\in\)BC(2;3;4;5;6)
=> x+1 \(\in\) {0;60;120;180;260;320;....}
Mà 0\(\le\)x+1\(\le\)300
=> Nếu x+1=120 thì x= 119\(⋮\)7
Nếu x+1=180 thì x= 179\(⋮̸\) 7
Vậy số học sinh của khối là 119 em