K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

F(x) chia x-1 dư 2 nên F(x)= (x-1).Q(x)+2

=> F(1)= 2

F(x) chia cho x-2 dư 3 nên F(x)= (x-2).Q(x)+3

=> F(2)= 3

ta có F(x)= (x-1)(x-2).Q(x)+ax+b

với x=1 ta có F(1)= a+b

với x=2 ta có F(2)= 2a+b

=> a+b=2 (1)

    2a+b=3 (2)

trừ vế với vế của (1) và (2) ta dc 

a+b-(2a+b)=2-3

=> a+b-2a-b= -1

=> -a= -1

=> a=1

thay vào (1) ta có a+b= 2 => 1+b=2 => b=1

vậy số dư của đa thức F(x) cho (x-1)(x-2) là x

6 tháng 11 2016

số dư là x+1 nha mk nhầm

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

6 tháng 5 2020

Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2 

=> đa thức dư có bậc cao nhất là 1 

=> G/s: đa thức dư là: r(x) = a x + b 

Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b 

Vì f ( x ) chia ( x - 2 ) dư 2016 

=> f ( 2 ) = 2016   => a.2 + b = 2016 (1) 

Vì f(x ) chia ( x - 3 ) dư 2017 

=> f ( 3) = 2017 => a.3 + b  = 2017 (2) 

Từ (1) ; (2) => a = 1; b = 2014 

=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014

và đa thức dư là: x + 2014

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

31 tháng 1 2020

Gọi đa thức bậc ba đó là \(F\left(x\right)=ax^3+bx^2+cx+d\)

\(\Rightarrow F\left(-1\right)=-a+b-c+d=-18\)

F(x) cho x -1; x - 2; x - 3 đều có số dư là 6\(\Rightarrow\hept{\begin{cases}ax^3+bx^2+cx+\left(d-6\right)⋮x-1\\ax^3+bx^2+cx+\left(d-6\right)⋮x-2\\ax^3+bx^2+cx+\left(d-6\right)⋮x-3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}F\left(1\right)=0\\F\left(2\right)=0\\F\left(3\right)=0\end{cases}}\)(định lý Bezout)

\(\Rightarrow\hept{\begin{cases}a+b+c+\left(d-6\right)=0\\8a+4b+2c+\left(d-6\right)=0\\27a+9b+3c+\left(d-6\right)=0\end{cases}}\)

Tịt rồi)): Trưa về suy nghĩ tiếp

15 tháng 1 2021

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\)  và dư \(ax+b\)

=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)

Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5

=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\) 

=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1

15 tháng 1 2021

Giả sử đa thức bị chia là m (x)

Gia sử  thương là : q( x )

Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1

Suy ra , ta có : m( x ) =( x2 - 5x + 6 )                 q( x ) = ax + b

Đi tìm X

x2 - 5x + 6 = 0 

x2 - 2x - 3x + 6 = 0

 x( x - 2) - 3(x - 2) = 0

 ( x - 2)( x - 3) = 0

Vậy  x = 2 hoặc x = 3

Ta có  giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :

f( 2 ) = 5 

-> 2a + b = 5 ( 1)

Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó  ta được :

f( 3 ) = 7

-> 3a + b = 7 ( 2)

Từ ( 1  và  2) suy ra : a = 2 ; b = 1

Suy ra : f( x ) = ( x2 - 5x + 6 )      Thay số  q( x ) = 2x + 1

Vậy dư là 2x +1