K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Gọi vecto vận tốc của tàu là \(\overrightarrow {AB} \), vecto vận tốc của dòng nước là vecto \(\overrightarrow {BC} \)

Gọi vecto vận tốc của tàu là \(\overrightarrow {AB} \), vecto vận tốc của dòng nước là vecto \(\overrightarrow {BC} \)

Ta có vecto tổng là \(\overrightarrow F  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Độ dài vecto tổng là \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{30}^2} + {{10}^2}}  = 10\sqrt {10} \)(km/h)

Vậy độ dài vecto tổng là \(10\sqrt {10} \)(km/h).

Ta có vecto tổng là \(\overrightarrow F  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Độ dài vecto tổng là \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{30}^2} + {{10}^2}}  = 10\sqrt {10} \)(km/h)

Vậy độ dài vecto tổng là \(10\sqrt {10} \)(km/h).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Gọi vectơ chỉ vận tốc của máy bay là vectơ \(\overrightarrow {AB} \) và vectơ chỉ vận tốc của gió là vectơ \(\overrightarrow {BC} \).

Ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Áp dụng định lý Pitago ta có:

\(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{150}^2} + {{30}^2}}  = 30\sqrt {26} \)   

Vậy độ dài vectơ tổng của hai vectơ nói trên là \(30\sqrt {26} \) km/h

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Từ giả thiết ta có:

\(AF = FB = ED\); \(AE = EC = FD\); \(BD = DC = EF\)

Từ đó dựa vào hình ta có:

a) Các vectơ bằng vectơ \(\overrightarrow {EF} \)là \(\overrightarrow {DB} \) và \(\overrightarrow {CD} \)

b) Các vectơ đối vectơ \(\overrightarrow {EC} \) là \(\overrightarrow {EA} \) và \(\overrightarrow {DF} \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta thấy hai hướng đông và tây là ngược nhau và tỉ số độ dài \(\frac{{\left| {\overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}} = \frac{{50}}{{20}} = \frac{5}{2}\)

\( \Rightarrow \overrightarrow b  =  - \frac{5}{2}\overrightarrow a \)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OM} \)  biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\)

b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right)\)

Vậy \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M  là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Vecto \(\overrightarrow a ,\;\overrightarrow b \) là vecto vận tốc của máy bay A và máy bay b.

Do đó \(\left| {\overrightarrow a } \right|,\;\left| {\overrightarrow b } \right|\) lần lượt là độ lớn của vecto vận tốc tương ứng.

Ta có: \(\left| {\overrightarrow a } \right| = 600,\;\left| {\overrightarrow b } \right| = 800\)

\( \Rightarrow \frac{{\left| {\overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}} = \frac{{800}}{{600}} = \frac{4}{3}\)

Hai hướng Đông Bắc và Tây Nam là ngược nhau, do đó \(\overrightarrow b  =  - \frac{4}{3}\overrightarrow a \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)

b) Thay \(t = 2\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.2 = 81\\y = 1 + 30.2 = 61\end{array} \right.\)

Vậy khi \(t = 2\) thì tọa độ của ô tô là \(\left( {81;61} \right)\)

Thay \(t = 4\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.4 = 161\\y = 1 + 30.4 = 121\end{array} \right.\)

Vậy khi \(t = 4\) thì tọa độ của ô tô là \(\left( {161;121} \right)\)

30 tháng 3 2017

- Các vectơ cùng phương: ; , , ; .

- Các vectơ cùng hướng: ; , ,

- Các vectơ ngược hướng: ; ; ; .

- Các vectơ bằng nhau: = .

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Tọa độ của vecto \(\overrightarrow {OM} \) là tọa độ của điểm M (trong đó O là gốc tọa độ)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Ta có: \(\overrightarrow n \) và \(\overrightarrow {H{M_0}}  = \left( {{x_0} - {x_H};{y_0} - {y_H}} \right)\)

Mà là hình chiếu vuông góc của \({M_0}\) trên \(\Delta \) nên \(H{M_0} \bot \Delta \)

Mặt khác vectơ pháp tuyến \(\overrightarrow n \) cùng vuông góc với \(\Delta \)

Suy ra \(\overrightarrow n \) và \(\overrightarrow {H{M_0}} \)cùng phương (đpcm)

b) Ta có: \(\overrightarrow n  = (a;b)\) và \(\overrightarrow {H{M_0}}  = \left( {{x_0} - {x_H};{y_0} - {y_H}} \right)\)

Suy ra \(p = \overrightarrow n .\overrightarrow {H{M_0}}  = a\left( {{x_0} - {x_H}} \right) + b\left( {{y_0} - {y_H}} \right) = a{x_0} + b{y_0} - \left( {a{x_H} + b{y_H}} \right)\)                (1)

Mà  thuộc đường thẳng \(\Delta \) nên tọa độ điểm thỏa mãn phương trình đường thẳng \(\Delta \)

Thay tọa độ điểm vào phương trình \(\Delta :ax + by + c = 0\left( {{a^2} + {b^2} > 0} \right)\) ta có:

\(a{x_H} + b{y_H} + c = 0 \Leftrightarrow c =  - \left( {a{x_H} + b{y_H}} \right)\)

Thay \(c =  - \left( {a{x_H} + b{y_H}} \right)\) vào (1) ta có

\(p = a{x_0} + b{y_0} + c\)       (đpcm)

c) Ta có: \(p = \overrightarrow n .\overrightarrow {H{M_0}}  \Leftrightarrow \overrightarrow {H{M_0}}  = \frac{p}{{\overrightarrow n }} \Rightarrow \left| {\overrightarrow {H{M_0}} } \right| = \left| {\frac{p}{{\overrightarrow n }}} \right| \Rightarrow \left| {\overrightarrow {H{M_0}} } \right| = \frac{{\left| p \right|}}{{\left| {\overrightarrow n } \right|}}\)