Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
+ Chu kì dao động của con lắc khi không có và có điện trường:
Gia tốc biểu kiến của con lắc nằm trong thang máy chuyển động với gia tốc \(\overrightarrow a\) là:
\(\overrightarrow {g'} = \overrightarrow {g} -\overrightarrow a \)
Thang máy đi lên chậm dần đều nên \(\overrightarrow g \uparrow \uparrow \overrightarrow a\) => \( {g'} ={g} -a \)
Mà \(a = \frac{g}{2} => g' = g - \frac{g}{2} = \frac{g}{2}.\)
Chu kì của con lắc lúc này là \(T' =2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{2l}{g}} = T\sqrt{2}.\)
Đáp án D
+ Chu kì dao động của con lắc T = π l g + π 0 , 5 l g = π 1 π 2 + π 0 , 5 π 2 = 1 + 2 2 s
mk nghĩ làm bài này như sau:
Ta có:\(\begin{cases}T1=2\pi\sqrt{\frac{l1}{g}}\\T2=2\pi\sqrt{\frac{l2}{g}}\end{cases}\)\(\Rightarrow\sqrt{\frac{l1.l2}{g^2}}=\frac{T1.T2}{\left(2\pi\right)^2}\)\(\Rightarrow\frac{1}{\sqrt{g}}.\sqrt{\frac{l1.l2}{g}}=\frac{T1.T2}{\left(2\pi\right)^2}\)
\(\Rightarrow\) \(T3=2\pi\sqrt{\frac{l1.l2}{g}}=\frac{\sqrt{g}}{2\pi}T1.T2\)
Chọn C
Đáp án B
Phương pháp: Áp dụng công thức tính chu kì dao động của con lắc đơn T = 2 π l g
Cách giải:
Khi gia tốc trọng trường giảm 4,5 lần, chiều dài dây treo giảm 2 lần thì:
Vậy chu kì tăng lên 1,5 lần
Đáp án D
Phương pháp: Sử dụng công thức tính chu kì của con lắc đơn T = 2 π l g
Cách giải:
Công thức tính chu kì dao động của con lắc đơn T = 2 π l g => Chu kì sóng tỉ lệ thuận với l
=> Khi chiều dài dây giảm 2 lần thì chu kì giảm 2 lần
=> T ' = T 2 => Chọn D