K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Chọn B.

Số cách lấy 7 viên bi từ hộp là   C 35 7

Số cách lấy 7 viên bi không có viên bi đỏ là C 20 7 .  

 Số cách lấy 7 viên vi có ít nhất 1 viên đỏ là C 55 7 - C 20 7  xác suất là  C 55 7 - C 20 7 C 55 7 .

11 tháng 10 2015

\(\Omega\) lấy 3 viên bi

\(\left|\Omega\right|=C^3_{12}\)

gọi A" 3 viên lấy ra màu đỏ"

\(\left|A\right|=C^3_7\)

Suy ra 

\(P\left(A\right)=\frac{C^3_7}{C^3_{12}}\)

23 tháng 10 2019

Giả sử trong tình huống xấu nhất ta chọn ngẫu nhiên 13 viên bi mà chỉ có bi màu vàng và màu xanh. Do để được chắc chắn 2 viên bi màu đỏ ta cần chọn thêm 2 viên bi nữa. Vậy cần chọn ít nhất 15 viên bi để chắc chắn được ít nhất 2 viên bi màu đỏ. Chọn B

7 tháng 12 2018

Đáp án là C

3 tháng 11 2019

Đáp án C

Để xác định biến cố, ta xét các trường hợp sau:

+) 2 bi xanh và 1 bi đỏ, suy ra có C 5 2 . C 4 1 = 40  cách.

+) 3 bi xanh và 0 bi đỏ, suy ra có C 5 3 = 10  cách.

Suy ra xác suất cần tính là  P = 40 + 10 C 9 3 = 25 42

15 tháng 11 2018

25 tháng 9 2018

Đáp án C

Xác suất cần tính là C 7 1 C 3 1 C 10 2 = 7 15

15 tháng 1 2017

7 tháng 5 2019

Chọn B

Chọn 4 viên bất kì trong 15 viên bi, số cách chọn là n(Ω)=1365 cách

Gọi A là biến cố “4 viên bi lấy ra không đủ cả ba màu”

Trường hợp 1: Chọn 2 đỏ, 1 trắng, 1 vàng có C 6 2 . C 5 1 . C 4 1 = 300  cách

Trường hợp 2: Chọn 1 đỏ, 2 trắng, 1 vàng có C 6 1 . C 5 2 . C 4 1 = 240  cách

Trường hợp 3: Chọn 1 đỏ, 1 trắng, 2 vàng có C 6 1 . C 5 1 . C 4 2 = 180  cách

Theo quy tắc cộng số cách chọn viên bi có đủ 3 màu là 300 + 240 + 180 = 720 cách

Từ đó suy ra số cách chọn 4 viên bi không đủ 3 màu là  n ( A ) = 1365 - 720 = 645

Xác suất cần tìm là  P ( A ) = 645 1365 = 43 91