K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Có gì khó đâu bạn -..-

( 2x + 5 )( 2x - 7 ) - ( -4x - 3 )2 = 16

<=> 2x( 2x - 7 ) + 5( 2x - 7 ) - [ (-4x)2 - 2.3.(-4x) + 32 ] = 16

<=> 4x2 - 14x + 10x - 35 - [ 16x2 + 24x + 9 ] = 16

<=> 4x2 - 4x - 35 - 16x2 - 24x - 9 = 16

<=> -12x2 - 28x - 44 - 16 = 0

<=> -12x2 - 28x - 60 = 0

<=> -4( 3x2 + 7x + 15 ) = 0

<=> 3x2 + 7x + 15 = 0

Ta có : 3x2 + 7x + 15 = 3( x2 + 7/3x + 49/36 ) + 131/12 = 3( x + 7/6 )2 + 131/12 ≥ 131/12 > 0 ∀ x

=> Vô nghiệm 

24 tháng 8 2020

\(4x^2-14x+10x-35-\left(16x^2+24x+9\right)=16\) 

\(4x^2-4x-35-16x^2-24x-9-16=0\)           

\(-12x^2-28x-60=0\) 

\(-4\left(3x^2+7x+15\right)=0\) 

\(3x^2+7x+15=0\) 

\(3\left(x^2+\frac{7}{3}x+5\right)=0\) 

\(x^2+\frac{7}{3}x+5=0\) 

\(x^2+2\cdot x\cdot\frac{7}{6}+\left(\frac{7}{6}\right)^2-\left(\frac{7}{6}\right)^2+5=0\) 

\(\left(x+\frac{7}{6}\right)^2+\frac{131}{36}=0\)  

\(\left(x+\frac{7}{6}\right)^2=-\frac{131}{36}\) ( vô lí vì \(\left(x+\frac{7}{6}\right)^2\ge0\forall x\)  ) 

Vậy phương trình vô nghiệm 

16 tháng 6 2018

a) Đặt  \(A=4x-x^2-5\)

\(-A=x^2-4x+5\)

\(-A=\left(x^2-4x+4\right)+1\)

\(-A=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge1\)

\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)

b) Đặt  \(B=x^2-2x+5\)

\(B=\left(x^2-2x+1\right)+4\)

\(B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\left(đpcm\right)\)

16 tháng 6 2018

a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)

b) x-2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0  với mọi x (đpcm)

4 tháng 7 2017

a)  ( 3x - 1 ) ( 2x + 7 )  - ( x + 1 ) ( 6x + 5 ) = 16 

<=> 6x+ 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16

<=> 6x+ 21x - 2x - 7 - ( 6x+ x - 5 )        = 16 

<=> 6x2+ 21x - 2x - 7 - 6x-x + 5              = 16 

<=> 18x - 2                                             = 16 

<=>  18x                                                 = 18 

=>        x                                                 = 1

Vậy....  

1 tháng 10 2017

Ta có: a+ b + c = 0

=> a+b = - c

a^3 + b^3 + c^3 = (a+b)3 - 3a2b - 3ab2 + c3

                               = ( -c)- 3a2b - 3ab+ c3

                               = (-c)+c-3ab( a+b)

                       =   - 3ab (-c) = 3abc ( đpcm)

NV
26 tháng 7 2020

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) và gom lại:

a/

\(\Leftrightarrow x^2+\frac{4}{x^2}+2\left(x+\frac{2}{x}\right)-3=0\)

Đặt \(x+\frac{2}{x}=t\Rightarrow x^2+\frac{4}{x^2}=t^2-4\)

Pt trở thành: \(t^2-4+2t-3=0\Leftrightarrow t^2+2t-7=0\)

Tới đây bạn giải ra t rồi thế vô chỗ đặt là được (nghiệm xấu quá, làm biếng giải tiếp)

b/

\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)-9\left(x-\frac{1}{x}\right)+7=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

\(\Rightarrow2\left(t^2+2\right)-9t+7=0\)

\(\Leftrightarrow2t^2-9t+11=0\)

Pt vô nghiệm

26 tháng 7 2020

dạ em cảm ơn Anh nhiều ạ

x(4x - 1)2(2x - 1)= 3/2

<=>(16x2 - 8x + 1)( 2x2 - x)= 3/2

<=>(16x2 - 8x + 1)( 16x2 - 8x)= 12

Đặt 16x2 - 8x= y, ta có phương trình:

(y + 1) . y= 12

<=>y2 + y - 12=0

<=>y2 + 4x - 3x - 12=0

<=>y(y + 4) - 3(x + 4)=0

<=>(y + 4)(y - 3)=0

Đến đây tự làm tiếp nha.

25 tháng 4 2019

x(4x-1)^2(2x+1)=3/2

<=>8x(4x-1)^2(2x-1)=8.3/2

<=>(16x^2-8x+1)(16x^2-8x)=12     (1)

đặt 16x^2-8x=y  ta có

 (y+1)y=12

<=>y^2+y-12=0

<=>y^2-3y+4y-12=0

<=>y(y-3)+4(y-3)=0

<=>(y-3)(y+4)=0

thay y=x^2+8x rồi giải phương trình

#Lười gõ phần sau

x(4x - 1)2(2x - 1)= 3/2

<=>(2x2 - x)(16x2 - 8x +1)= 3/2

<=>(16x2 - 8x)(16x2 - 8x + 1)= 12

Đặt 16x2 - 8x= y, ta được

y(y+ 1)=12

<=> y2 + y - 12=0

<=> y2 - 3y + 4y - 12=0

<=> y(y - 3) + 4(y - 3)=0

<=>(y - 3)(y + 4)=0

Đến đây tự làm nha

Nếu chơi lmht thì kb vs mk

25 tháng 4 2019

Tên nick bạn!

a) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)

b) Ta có: \(-x^2+5x-6=0\)

\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)

\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

c) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

⇔(4x2-10x)-(2x-5)=0

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

d) Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)

e) Ta có: \(x^3+2x^2-x-2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;1;-1\right\}\)

g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)

\(\Leftrightarrow-24x-8=0\)

\(\Leftrightarrow-8\left(3x+1\right)=0\)

⇔3x+1=0

\(\Leftrightarrow3x=-1\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

22 tháng 1 2020

h) \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy S = {2; 1; \(\frac{1}{2}\)}

i) \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)

Vậy S = {1;-2}

5 tháng 8 2016

3) \(\left(x-1\right)\left(x+1\right)^2-\left(2x-1\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)^2-\left(2x-1\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-1-2x+1\right)=0\)

\(\Leftrightarrow-x\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\\left(x+1\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)

19 tháng 7 2016
Mọi người giải giuos e trước 2h20p cũng đc ạ càng nhanh càng tốt e cảm ơn
19 tháng 7 2016

A= 2x^2 + 4x + xy + 2y 

=(xy+2x2)+(2y+4x)

=x(y+2x)+2(y+2x)

=(x+2)(y+2x)

Thay x=88,y=-76 ta được:

A=(88+2)*(-76+2*88)

=90*100

=9 000

B= x^2 +xy - 7x - 7y

=(xy-7y)+(x2-7x)

=y(x-7)+x(x-7)

=(x-7)(y+x).Thay vào tính bình thường