Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=4x-x^2-5\)
\(-A=x^2-4x+5\)
\(-A=\left(x^2-4x+4\right)+1\)
\(-A=\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\)
\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)
b) Đặt \(B=x^2-2x+5\)
\(B=\left(x^2-2x+1\right)+4\)
\(B=\left(x-1\right)^2+4\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\left(đpcm\right)\)
a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)
b) x2 -2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0 với mọi x (đpcm)
a) ( 3x - 1 ) ( 2x + 7 ) - ( x + 1 ) ( 6x + 5 ) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 + x - 5 ) = 16
<=> 6x2+ 21x - 2x - 7 - 6x2 -x + 5 = 16
<=> 18x - 2 = 16
<=> 18x = 18
=> x = 1
Vậy....
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) và gom lại:
a/
\(\Leftrightarrow x^2+\frac{4}{x^2}+2\left(x+\frac{2}{x}\right)-3=0\)
Đặt \(x+\frac{2}{x}=t\Rightarrow x^2+\frac{4}{x^2}=t^2-4\)
Pt trở thành: \(t^2-4+2t-3=0\Leftrightarrow t^2+2t-7=0\)
Tới đây bạn giải ra t rồi thế vô chỗ đặt là được (nghiệm xấu quá, làm biếng giải tiếp)
b/
\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)-9\left(x-\frac{1}{x}\right)+7=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
\(\Rightarrow2\left(t^2+2\right)-9t+7=0\)
\(\Leftrightarrow2t^2-9t+11=0\)
Pt vô nghiệm
x(4x - 1)2(2x - 1)= 3/2
<=>(16x2 - 8x + 1)( 2x2 - x)= 3/2
<=>(16x2 - 8x + 1)( 16x2 - 8x)= 12
Đặt 16x2 - 8x= y, ta có phương trình:
(y + 1) . y= 12
<=>y2 + y - 12=0
<=>y2 + 4x - 3x - 12=0
<=>y(y + 4) - 3(x + 4)=0
<=>(y + 4)(y - 3)=0
Đến đây tự làm tiếp nha.
x(4x-1)^2(2x+1)=3/2
<=>8x(4x-1)^2(2x-1)=8.3/2
<=>(16x^2-8x+1)(16x^2-8x)=12 (1)
đặt 16x^2-8x=y ta có
(y+1)y=12
<=>y^2+y-12=0
<=>y^2-3y+4y-12=0
<=>y(y-3)+4(y-3)=0
<=>(y-3)(y+4)=0
thay y=x^2+8x rồi giải phương trình
#Lười gõ phần sau
x(4x - 1)2(2x - 1)= 3/2
<=>(2x2 - x)(16x2 - 8x +1)= 3/2
<=>(16x2 - 8x)(16x2 - 8x + 1)= 12
Đặt 16x2 - 8x= y, ta được
y(y+ 1)=12
<=> y2 + y - 12=0
<=> y2 - 3y + 4y - 12=0
<=> y(y - 3) + 4(y - 3)=0
<=>(y - 3)(y + 4)=0
Đến đây tự làm nha
Nếu chơi lmht thì kb vs mk
a) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
b) Ta có: \(-x^2+5x-6=0\)
\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)
\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
c) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
⇔(4x2-10x)-(2x-5)=0
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
d) Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)
e) Ta có: \(x^3+2x^2-x-2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;1;-1\right\}\)
g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)
\(\Leftrightarrow-24x-8=0\)
\(\Leftrightarrow-8\left(3x+1\right)=0\)
⇔3x+1=0
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
h) \(2x^3-7x^2+7x-2=0\)
\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy S = {2; 1; \(\frac{1}{2}\)}
i) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)
Vậy S = {1;-2}
3) \(\left(x-1\right)\left(x+1\right)^2-\left(2x-1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)^2-\left(2x-1\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-1-2x+1\right)=0\)
\(\Leftrightarrow-x\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\\left(x+1\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
A= 2x^2 + 4x + xy + 2y
=(xy+2x2)+(2y+4x)
=x(y+2x)+2(y+2x)
=(x+2)(y+2x)
Thay x=88,y=-76 ta được:
A=(88+2)*(-76+2*88)
=90*100
=9 000
B= x^2 +xy - 7x - 7y
=(xy-7y)+(x2-7x)
=y(x-7)+x(x-7)
=(x-7)(y+x).Thay vào tính bình thường
Có gì khó đâu bạn -..-
( 2x + 5 )( 2x - 7 ) - ( -4x - 3 )2 = 16
<=> 2x( 2x - 7 ) + 5( 2x - 7 ) - [ (-4x)2 - 2.3.(-4x) + 32 ] = 16
<=> 4x2 - 14x + 10x - 35 - [ 16x2 + 24x + 9 ] = 16
<=> 4x2 - 4x - 35 - 16x2 - 24x - 9 = 16
<=> -12x2 - 28x - 44 - 16 = 0
<=> -12x2 - 28x - 60 = 0
<=> -4( 3x2 + 7x + 15 ) = 0
<=> 3x2 + 7x + 15 = 0
Ta có : 3x2 + 7x + 15 = 3( x2 + 7/3x + 49/36 ) + 131/12 = 3( x + 7/6 )2 + 131/12 ≥ 131/12 > 0 ∀ x
=> Vô nghiệm
\(4x^2-14x+10x-35-\left(16x^2+24x+9\right)=16\)
\(4x^2-4x-35-16x^2-24x-9-16=0\)
\(-12x^2-28x-60=0\)
\(-4\left(3x^2+7x+15\right)=0\)
\(3x^2+7x+15=0\)
\(3\left(x^2+\frac{7}{3}x+5\right)=0\)
\(x^2+\frac{7}{3}x+5=0\)
\(x^2+2\cdot x\cdot\frac{7}{6}+\left(\frac{7}{6}\right)^2-\left(\frac{7}{6}\right)^2+5=0\)
\(\left(x+\frac{7}{6}\right)^2+\frac{131}{36}=0\)
\(\left(x+\frac{7}{6}\right)^2=-\frac{131}{36}\) ( vô lí vì \(\left(x+\frac{7}{6}\right)^2\ge0\forall x\) )
Vậy phương trình vô nghiệm