K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

ĐKXĐ: x>0

\(\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

= \(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

= \(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=1\)

9 tháng 7 2017

cảm ơn bạn nhiều!!!

26 tháng 6 2017

\(\dfrac{3+\sqrt{21}}{1+\sqrt{7}}=\dfrac{\left(3+\sqrt{21}\right)\left(1-\sqrt{7}\right)}{-6}=\dfrac{3-3\sqrt{7}+\sqrt{21}-\sqrt{147}}{-6}\\ =\dfrac{3-3\sqrt{7}+\sqrt{21}-7\sqrt{3}}{-6}=-\dfrac{3-3\sqrt{7}+\sqrt{21}-7\sqrt{3}}{6}\)

26 tháng 6 2017

tớ nghĩ cái này đã tối giản......

19 tháng 10 2017

\(\dfrac{\sqrt{\dfrac{-\left(2\right)^5}{5^3.5^2}.\dfrac{-\left(5\right)^3}{2^9}.5^2}}{\sqrt[3]{\dfrac{-\left(3\right)^3}{2^6}.\dfrac{\left(5\right)^2}{3^2.2^5}.\dfrac{\left(5\right)^4}{3^4}}}=\dfrac{\sqrt{\dfrac{1}{2^4}}}{\sqrt[3]{\dfrac{-\left(5\right)^6}{2^{12}.3^3}}}=\dfrac{\dfrac{1}{4}}{\sqrt[3]{\left(\dfrac{-5^2}{2^4.3}\right)^3}}=\dfrac{\dfrac{1}{4}}{\dfrac{-25}{48}}=\dfrac{-12}{25}\)

3 tháng 7 2017

\(P=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(P=\dfrac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{99}+\sqrt{100}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)

\(P=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}\)

\(P=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(P=-1+\sqrt{100}=-1+10=9\)

3 tháng 7 2017

Áp dụng:\(\dfrac{1}{\sqrt{a}+\sqrt{a+1}}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\)

18 tháng 7 2017

câu b bạn phân tích x2 +5x + 6 =(x+2 )(x+3) và 3x -x2 = x(3-x ) rồi đặtnhân tử chung tương tự câu a ,

18 tháng 7 2017

=\(\dfrac{x+3+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}}\)

=\(\dfrac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}\)

=\(\dfrac{\sqrt{x+3}}{\sqrt{x-3}}\)

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

4 tháng 8 2017

1. \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

2. a) Với a>b>0 thì

\(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\dfrac{a-\sqrt{a^2-b^2}}{b}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{b^2}{b\sqrt{a^2-b^2}}=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{b}{\sqrt{a^2-b^2}}\)

\(=\dfrac{a-b}{\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a-b}.\sqrt{a+b}}=\sqrt{\dfrac{a-b}{a+b}}\)

b) Thay a = 3b ta được

\(Q=\sqrt{\dfrac{a-b}{a+b}}=\sqrt{\dfrac{3b-b}{3b+b}}=\sqrt{\dfrac{2b}{4b}}=\sqrt{\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}\)

4 tháng 8 2017

1) d) ta có : \(VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(\Leftrightarrow\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(\Leftrightarrow\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)

\(\Rightarrow\) \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) (đpcm)

14 tháng 7 2017

a) \(\sqrt{\left|x\right|-1}\) biểu thức sau có nghĩa \(\Leftrightarrow\) \(\left|x\right|-1\ge0\)

\(\Leftrightarrow\left|x\right|\ge1\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\hoac\\x\le-1\end{matrix}\right.\)

b) \(\sqrt{\left|x-1\right|-3}\) biểu thức sau có nghĩa \(\Leftrightarrow\left|x-1\right|-3\ge0\)

\(\Leftrightarrow\left|x-1\right|\ge3\) \(\left\{{}\begin{matrix}x-1\ge3\\hoac\\x-1\le-3\end{matrix}\right.\)

c) \(\sqrt{4-\left|x\right|}\) biểu thức sau có nghĩa \(\Leftrightarrow4-\left|x\right|\ge0\)

\(\Leftrightarrow4\ge\left|x\right|\) \(\Leftrightarrow-4\le x\le4\)

14 tháng 7 2017

ko có E,F ak bn??

20 tháng 6 2017

\(C=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}.\sqrt{b}}\)

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}.\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}.\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}\\ =2\sqrt{b}\)

20 tháng 6 2017

thanghoamơn's'x's'x nhiều