Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x^2-3x+2\ne0\\x^2-4x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)
\(\dfrac{x+4}{x^2-3x+2}-\dfrac{x+1}{x^2-4x+3}=\dfrac{2x+5}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{x+4}{x^2-3x+2}-\dfrac{x+1}{x^2-4x+3}-\dfrac{2x+5}{x^2-4x+3}=0\)
\(\Leftrightarrow\dfrac{x+4}{x^2-2x-x+2}-\dfrac{3x+6}{x^2-3x-x-3}=0\)
\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(x-1\right)}-\dfrac{3x+6}{\left(x-3\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\dfrac{3\left(x+2\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+x-12-3x^2+12}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{-2x^2+x}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{-x\left(2x-1\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{0;\dfrac{1}{2}\right\}\)
a) \(\dfrac{x+1}{4}-\dfrac{5+2x}{8}=\dfrac{3-4x}{2}\)
⇔\(\dfrac{2\left(x+1\right)}{8}-\dfrac{5+2x}{8}=\dfrac{4\left(3-4x\right)}{8}\)
⇔ 2x + 2 - 5 - 2x = 12 -16x
⇔ 16x = 15
⇔ x = 15/16
b) \(\dfrac{4-3x}{5}-\dfrac{4-x}{10}=\dfrac{x+2}{2}\)
⇔\(\dfrac{2\left(4-3x\right)}{10}-\dfrac{4-x}{10}=\dfrac{5\left(x+2\right)}{10}\)
⇔ 8 - 6x - 4 + x = 5x + 10
⇔ 10x = -6
⇔ x = -6/10
Câu 1:
x + 1/4 - 5 + 2x/8 = 3 - 4x/2
<=> 2x + 2/8 - 5 + 2x/8 = 12 - 16x/8
<=> 2x + 2 - 5 - 2x = 12 - 16x
<=> -3 = 12 - 16x <=> 15 = 16x <=> x = 15/16
Câu 2:
4 - 3x/5 - 4 - x/10 = x + 2/2
<=> 8 - 6x/10 - 4 - x/10 = 5x + 10/10
<=> 8 - 6x - 4 + x = 5x + 10
<=> 4 - 5x = 5x + 10
<=> 4 = 10x + 10 <=> 10x = -6 <=> x = -3/5
a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)
\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)
\(\Leftrightarrow\frac{1+3x}{2+x}=1\)
\(\Leftrightarrow1+3x=2+x\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)
\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)
\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)
\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)
\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)
\(\Leftrightarrow-12x^2+60x-36=0\)
\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)
\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)
\(x_2=\frac{5-\sqrt{13}}{6}\)
d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)
(dấu bằng thứ nhất của câu d là dấu cộng à???)
a) 1x−3+3=x−32−x1x−3+3=x−32−x ĐKXĐ: x≠2x≠2
Khử mẫu ta được: 1+3(x−2)=−(x−3)⇔1+3x−6=−x+31+3(x−2)=−(x−3)⇔1+3x−6=−x+3
⇔3x+x=3+6−13x+x=3+6−1
⇔4x = 8
⇔x = 2.
x = 2 không thỏa ĐKXĐ.
Vậy phương trình vô nghiệm.
b) 2x−2x2x+3=4xx+3+272x−2x2x+3=4xx+3+27 ĐKXĐ:x≠−3x≠−3
Khử mẫu ta được:
14(x+3)−14x214(x+3)−14x2= 28x+2(x+3)28x+2(x+3)
⇔14x2+42x−14x2=28x+2x+6⇔14x2+42x−14x2=28x+2x+6
⇔
b: \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)
\(\Leftrightarrow3x^2+8x-3-2x^2-3x+5+4=x^2+2x-3\)
\(\Leftrightarrow x^2+5x+6=x^2+2x-3\)
=>3x=-9
hay x=-3(loại)
c: \(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)
\(\Leftrightarrow x^2+2x-15=x^2-1-8=x^2-9\)
=>2x=6
hay x=3(loại)
\(Đk:\) \(x\ne1,x\ne2,x\ne3\)
\(\Rightarrow\dfrac{x+4}{\left(x-2\right)\left(x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(x-1\right)}=\dfrac{2x+5}{\left(x-3\right)\left(x-1\right)}\)
\(\Rightarrow\dfrac{\left(x+4\right)\cdot\left(x-3\right)+\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x-3\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(x-3\right)\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)
\(\Rightarrow0x-14=x-10\)
\(\Rightarrow x=-4\left(tmđk\right)\)