Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(\left(x+2\right)^4=y^3+x^4\)
\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)
\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)
+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)
\(\Rightarrow y^3>8x^3=\left(2x\right)^3\) (1)
+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)
\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)
\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)
* Với \(y=2x+1\), thay vào biểu thức ta có :
\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)
\(\Leftrightarrow12x^2+26x+15=0\)
\(\Leftrightarrow2x\left(6x+13\right)=-15\)
Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm
* Với \(y=2x+2\), ta có :
\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x+8=0\)
\(\Leftrightarrow x=-1\)
Suy ra : \(y=2.\left(-1\right)+2=0\)
Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
a)
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)
+ Với \(xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Thay vào biểu thức ta đc \(x=y=0\)
+ Với \(xy+1=0\Leftrightarrow xy=-1\)
Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)
Thay vao biểu thức ta thấy thỏa mãn !
Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
Đây là cách hiện đại :
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)
a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)
cu hai so nhom 1 nhom roi dat thua so chung la xong
b,x^4+x^3+x^3+x^2+x^2+x+x+1
cu hai so lai nhom 1 nhom va dat thua so chung
1a) 8xy(8-12x+6x*x-x*x*x)
chú thích x*x là x bình phương
x*x*x là x lập phương
2. a) 3x (x-5)- (x-1)(2+3x)=30
3x*x-15x-2x-3x*x+2+3x=30
14x=28
x=2
b) (x+2)(x-3)-(x-2)(x+5)=0
x*x-3x+2x-6-x*x-5x+2x+10=0
2x=-4
x=-2
còn mấy bài còn lại mình không biết
1. = (x^2-x+6+x-3).(x^2-x+6-x+3) [ áp dụng a^2-b^2=(a-b).(a+b)]
= (x^2+3).(x^2-2x+9)
2. Vì 105 lẻ => 2x+5y+1 và 2^|x| + x^2+x+y lẻ
Mà 2y chẵn , 1 lẻ => 5y chẵn => y chẵn
Lại có : x^2+x=x.(x+1) chẵn
=> 2^|x| lẻ => x=0
Khi đó : (5y+1).(y+1) = 105
Đến đó bạn tự tìm ước của 105 rùi giải đi
k mk nha
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath