K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Ta có: M = x2 + 6y + 10 + y2 - x

          M = ( x2 - x + 1/4 ) + ( y+ 6y + 9) + 3/4

          M = ( x - 1/2)2 + ( y + 3 )2 + 3/4

- Vì ( x - 1/2 )2 >= 0 với mọi x; ( y + 3 )2 >= 0 với mọi y => M >= 3/4 với moi x,y.

Dấu = xra <=> x - 1/2 = 0 và y + 3 = 0

                  <=> x = 1/2 và y = -3.

4 tháng 8 2016

1.

\(P=x^2+6y+10+y^2-x\)

\(=x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+y^2+2\times y\times3+3^2-3^2+10\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(y+3\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min P = \(\frac{3}{4}\) khi x = \(\frac{1}{2}\) và y = \(-3\)

2.

\(N=x-x^2\)

\(=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)

Vậy Max N = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)

30 tháng 8 2017

Ta có : 2x2 - 6x 

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)

Q\(=\left(\sqrt{2}x-6\right)^2-36\)

Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)

Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)

Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

13 tháng 9 2016

(x-1/2)2 + (y + 3)2 -1/4 +10 -9

GTNN = 3/4

(giải theo pp học vnen)

1 tháng 8 2017

Ta có : A = x2 + 2x + y2 + 6y + 10

=> A = (x2 + 2x + 1) + (y2 + 6y + 9)

=> A = (x + 1)2 + (y + 3)2

Mà : (x + 1)2 và (y + 3)\(\ge0\forall x,y\)

Nên : A = (x + 1)2 + (y + 3)\(\ge0\forall x,y\)

Vậy Amin = 0 tại x = -1 và y = -3

1 tháng 8 2017

\(A=x^2+2x+y^2+6y+10\)

\(=x^2+2x+y^2+6y+1+9\)

\(=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)\)

\(=\left(x+1\right)^2+\left(y+3\right)^2\)

vì \(\left(x+1\right)^2\ge0\forall x;\left(y+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\forall x\)

vậy \(MinA=0\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-3\end{cases}}\)

3 tháng 7 2016

\(M=x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+y^2+2.3.y+9-9+10\)

\(M=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3.y+9\right)+\frac{3}{4}\)

\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(M_{min}=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Chọn mình nha cảm ơn chúc bạn học tốt