K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

ta thấy : 1/21>1/33;...1/30>1/33

Vậy 1/21+..+1/30>1/33+...+1/33(10 lần 1/33)

1/3=11/33

mà 1/33+..+1/33(10 lần 1/33) =10/33

Suy ra S>1/33+..+1/33(10 lần 1/33)>1/3

Vậy S>1/3

nhớ k nha bạn 

30 tháng 3 2018

viết lôn nha câu đầu la .. 1/30.>1/33

4 tháng 5 2019
 

Ta có: \(\frac{1}{50}\) >\(\frac{1}{100}\)

\(\frac{1}{51}\)>\(\frac{1}{100}\)

\(\frac{1}{52}\)>\(\frac{1}{100}\)

..................

\(\frac{1}{99}\)>\(\frac{1}{100}\)

=>\(\frac{1}{50}\)+\(\frac{1}{51}\)+.............+\(\frac{1}{99}\)>\(\frac{1}{100}\).50=\(\frac{1}{2}\)(50 là số số hạng  của S nha)

=>S>\(\frac{1}{2}\)

 
 
 
24 tháng 6 2018

\(A=47.36+64.47+15\)

\(A=47.\left(36+64\right)+15\)

\(A=47.100+15\)

\(A=4700+15\)

\(A=4715\)

\(B=27+35+65+73+75\)

\(B=\left(27+73\right)+\left(35+65\right)+75\)

\(B=100+100+75\)

\(B=275\)

\(C=37+37.15+84.37\)

\(C=37.\left(1+15+84\right)\)

\(C=37.100\)

\(C=3700\)

\(D=\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+\frac{1}{23.24}\)

\(D=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+\frac{1}{23}-\frac{1}{24}\)

\(D=\frac{1}{20}-\frac{1}{24}\)

\(D=\frac{24}{480}-\frac{20}{480}\)

\(D=\frac{4}{480}=\frac{1}{120}\)

\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(E=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(E=1-\frac{1}{50}\)

\(E=\frac{49}{50}\)

5 tháng 4 2024

a: Ta có

A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)

⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng 

⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)

⇒ A > 1

vậy A > 1

b: ta có

S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)\(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)\(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)\(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))

⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))

⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)

⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)

⇔ S > \(\dfrac{107}{210}\)\(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)

vậy S > \(\dfrac{1}{2}\)

 

18 tháng 5 2017

trả lời thế này chắc được điểm cao đó :

Ta thấy : \(\frac{5}{20}>\frac{5}{24}\)\(\frac{5}{21}>\frac{5}{24}\)\(\frac{5}{22}>\frac{5}{24}\)\(\frac{5}{23}>\frac{5}{24}\)\(\frac{5}{24}=\frac{5}{24}\)

\(\Rightarrow\)\(S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{24}+\frac{5}{24}+\frac{5}{24}+\frac{5}{24}+\frac{5}{24}=\frac{5}{24}.5=\frac{25}{24}\)

\(S>\frac{25}{24}>\frac{24}{24}=1\)

\(\Rightarrow S>1\)

18 tháng 5 2017

Ta có :

1<5/24x5

Mà 5/20>5/24

5/21>5/24

5/22>5/24

5/23>5/24

5/24=5/24

=>5/20+5/21+5/22+5/23+5/24>5x5/24

S>1

24 tháng 6 2018

A = 47 x 36 + 64 x 47 + 15

A= 47 x ( 64 + 36 ) + 15 = 47 x 100 + 15 = 4700 + 15 = 4715

vậy A= 4715

B= 27+35 + 65 + 73+ 75

B= (27+ 73) + ( 35 + 65) +75

B= 100 +100 +75 = 275

vậy B= 275

C= 37 +37 x 15 +37 x 84 

C= 37 x ( 1+15 +84 )= 37 x 100 = 3700

 vậy C= 3700

D = 1/20x21  +  1/21x22    +    1/22x23    +    1/23x24

D= 1/20   -   1/21   +    1/21  -  1/22   + 1/22   -   1/23  +   1/23   -    1/24

D= 1/20 -1/24 = 1/120 vậy D= 1/120

E= 1/1x2   +  1/2x3 + ...... + 1/49x50

E= 1/1  -   1/2    +    1/2  -   1/3  +...... + 1/49   -   1/50

E = 1 - 1/50 = 49/50 

vậy E= 49/50

 CHÚC HOK TOT