Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x-2\right)-24=0\)
Đặt t = x2 + 5x - 1
Khi đó : (x2 + 5x) = t + 1 ; (x2 + 5x - 2) = t - 1
Ta có : C = (x2 + 5x - 2)2 (x2 + 5x - 2) - 24 = 0
=> (x2 + 5x - 2)3 = 24
MK chỉ giả được đến đây thôi
a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)
\(=\frac{4x}{\left(x+1\right)^2}\)=VP
b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)
=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)
=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP
c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)
\(=x+y=\)VP
Vậy các đẳng thức được chứng minh
=
c: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+9x^2=0\)
hay x=1
b) 4x(2-x)+(2x+1)^2=2
8x-4x^2+4x^2+4x+1-2=0
(8x+4x)+(-4x^2+4x^2)+(1-2)=0
12x + 0 -1 =0
12x=1
x=1/12
Vậy x= 1/2
c) (x-3)^3-x^2(x-9)=0
x^3-9x^2+27x-x^3+9x^2=0
(x^3-x^3)+(-9x^2+9x^2)+27x=0
0 + 0 + 27x=0
x= 0
Vậy x=0
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)
\(\Leftrightarrow x^2+16x+36=0\)
\(\Leftrightarrow x^2+16x+64=28\)
\(\Leftrightarrow\left(x+8\right)^2=28\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\sqrt{28}-8\\x_2=-\sqrt{28}-8\end{cases}}\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(2x^2+16x+32-x^2+4=0\)
\(x^2+16x+36=0\)
\(x^2+16x+64=28\)
\(\left(x+8\right)^2=28\)
bình phương thì chia lm 2 trường hợp
lm tiếp phần sau