Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x+1/x=a
=> (x+1/x)^2=x^2+1/x^2+2=a^2-2
Ta có a^2-2-4a+5=0
a^2-4a+3=0
<=> (a-3)(a-1)=0
=> a=1 và a=3
sau đó bạn tự thay a vào nhé
Bài I:
a) Với x=25 tmđk đề bài
Thay x=25 vào biểu thức
<=>N=\(\dfrac{1}{\sqrt{25}}+1=\dfrac{6}{5}\)
Vậy với x=25 thì N=\(\dfrac{6}{5}\)
b)\(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\)
<=>\(\dfrac{1+\sqrt{a}}{1-a}-\dfrac{1-\sqrt{a}}{1-a}\)
<=>\(\dfrac{1+\sqrt{a}-1+\sqrt{a}}{1-a}\)
<=>\(\dfrac{2\sqrt{a}}{1-a}\)
c)Ta có M.N>1/2
=>\(\dfrac{2\sqrt{a}}{1-a}.\dfrac{1}{\sqrt{a}}+1>\dfrac{1}{2}\)
<=>\(\dfrac{2\sqrt{a}}{1-a}.\dfrac{1}{\sqrt{a}}+\dfrac{\sqrt{a}}{\sqrt{a}}=\dfrac{2\sqrt{a}}{1-a}.\dfrac{1+\sqrt{a}}{\sqrt{a}}\)>\(\dfrac{1}{2}\)
<=>\(\dfrac{2}{1-\sqrt{a}}\)>\(\dfrac{1}{2}\)
<=>\(\dfrac{4}{2\left(1-\sqrt{a}\right)}>\dfrac{1-\sqrt{a}}{2\left(1-\sqrt{a}\right)}\)
=>4>1-\(\sqrt{a}\)
<=>-\(\sqrt{a}\)>3
<=>a>9
Khi M.N >1/2 thì a>9
Mai giải tiếp ...mk đang bận
Bài III)
1) Đặt \(\dfrac{1}{x+y}=a,\dfrac{1}{x-y}=b\left(Đk:x\ne+-y\right)\)
=>\(\left\{{}\begin{matrix}a+b=\dfrac{2}{3}\\a-b=\dfrac{-1}{3}\end{matrix}\right.< =>\left\{{}\begin{matrix}2b=1\\a-b=\dfrac{-1}{3}\end{matrix}\right.< =>\left\{{}\begin{matrix}b=\dfrac{1}{2}\\a=\dfrac{1}{6}\end{matrix}\right.\)
<=>tự nhân ra rồi giải tiếp nhé...pt này dài lắm
a) \(\left(3\sqrt{27}-2\sqrt{75}+\sqrt{363}\right)\sqrt{3}=3\sqrt{81}-2\sqrt{225}+\sqrt{1089}\)
\(=3.9-2.15+33=27-30+33=30\)
b) \(\left(12\sqrt{2}-3\sqrt{18}+2\sqrt{8}\right):\sqrt{2}=12-3\sqrt{9}+2\sqrt{4}\)
\(=12-3.3+2.2=12-9+4=7\)
c) \(\sqrt{7-2\sqrt{10}}+\sqrt{20}+\dfrac{1}{2}\sqrt{8}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+2\sqrt{5}+\sqrt{2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+2\sqrt{5}+\sqrt{2}=\sqrt{5}-\sqrt{2}+2\sqrt{5}+\sqrt{2}=3\sqrt{5}\)
d) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\dfrac{\sqrt{2}\sqrt{3-\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{2}\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2\left(3-\sqrt{5}\right)}}{\sqrt{2}}-\dfrac{\sqrt{2\left(3+\sqrt{5}\right)}}{\sqrt{2}}=\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\dfrac{\left|\sqrt{5}-1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{5}+1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1}{\sqrt{2}}-\dfrac{\sqrt{5}+1}{\sqrt{2}}=\dfrac{\sqrt{5}-1-\left(\sqrt{5}+1\right)}{\sqrt{2}}=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}\)
\(=\dfrac{-2}{\sqrt{2}}=\dfrac{-\sqrt{2}.\sqrt{2}}{\sqrt{2}}=\dfrac{-\sqrt{2}}{1}=-\sqrt{2}\)