K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\frac{2014.2015-1}{2013.2015+2014}\)

\(C=\frac{2013.2015+\left(2015-1\right)}{2013.2015+2014}\)

\(C=\frac{2013.2015+2014}{2013.2015+2014}\)

\(C=1\)

11 tháng 10 2015

\(C=\frac{2014\cdot2015-1}{2013\cdot2015+2014}=\frac{\left(2013+1\right)\cdot2015-1}{2013\cdot2015+2014}=\frac{2013\cdot2015+2015-1}{2013\cdot2015+2014}=\frac{2013\cdot2015+2014}{2013\cdot2015+2014}=1\)

Lần sau nếu bạn ghi không như vậy thì nhớ có dấu ngoặc, kẻo nhầm lẫn

29 tháng 12 2015

\(=\frac{\left(2013+1\right)\cdot2015-1}{2013\cdot2015+2014}=\frac{2013\cdot2015+2015-1}{2013\cdot2015+2014}=\frac{2013\cdot2015+2014}{2013\cdot2015+2014}=1\)

29 tháng 12 2015

\(\frac{2014.2015-1}{2013.2015+2014}=\frac{\left(2013+1\right).2015-1}{2013.2015+2014}=\frac{2013.2015+2015-1}{2013.2015+2014}=\frac{2013.2015+2014}{2013.2015+2014}=1\)

20 tháng 12 2018

ez mà =))

\(A=\frac{1^{2014}+2^{2014}+3^{2014}+...+10^{2014}}{2^{2014}.\left(1^{2014}+2^{2014}+...+10^{2014}\right)}=\frac{1}{2^{2014}}\)

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)

30 tháng 4 2021

Thay x = 0 vào đa thức P(x) ta được : 

\(P\left(0\right)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0\)* đúng * (1) 

tức là x = 0 là nghiệm của đa thức P(x) 

Thay x = 0 vào đa thức Q(x) ta được :

\(Q\left(0\right)=3.0^4+3.0^2-\frac{1}{4}-4.0^3-2.0^2=-\frac{1}{4}\)* đúng * (2) 

tức là x = 0 ko phải nghiệm của đa thức Q(x) 

Từ (1) ; (2) ta có đpcm 

19 tháng 12 2019

a) Điều kiện để A có nghĩa : \(x\ne1\)và \(x\ne2\)

 \(A=\frac{1}{x-1}:\frac{x-2}{2\left(x-1\right)}=\frac{1}{x-1}.\frac{2\left(x-1\right)}{x-2}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}=\frac{2}{x-2}\)

b) Để A có giá trị nguyên thì \(\frac{2}{x-2}\inℤ\)\(\Rightarrow2⋮\left(x-2\right)\)

\(\Rightarrow x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Rightarrow x\in\left\{0;1;3;4\right\}\)

mà \(x\ne1\)\(\Rightarrow x\in\left\{0;3;4\right\}\)

Vậy \(A\inℤ\Leftrightarrow x\in\left\{0;3;4\right\}\)

23 tháng 9 2017

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...........\left(1-\frac{1}{2014}\right)\)

\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right).........\left(\frac{2014}{2014}-\frac{1}{2014}\right)\)

\(=\frac{1}{2}.\frac{2}{3}............\frac{2013}{2014}\)

\(=\frac{1}{2014}\)

23 tháng 9 2017

(1-1/2).(1-1/3)......(1-1/2014)

=1/2.2/3.....2013/2014

=1.2....2013/2.3.....2014

=1/2014