K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

25 tháng 7 2017

17 tháng 5 2018

Đáp án A

Trong mặt phẳng  dựng đường thẳng đi qua A và vuông góc vưới SB tại K

Ta chứng minh được

27 tháng 2 2019

Đáp án B

12 tháng 7 2018

18 tháng 9 2018

Kẻ SG vuông góc (ABC)

S.ABC là khối chóp đều

=>ΔABC đều

=>G là trọng tâm, là trực tâm của ΔABC

Gọi giao của AG với BC là D

=>D là trung điểm của BC

ΔABC đều có AD là trung tuyến

nên \(AD=\dfrac{a\sqrt{3}}{2}\)

=>\(AG=\dfrac{a\sqrt{3}}{2}\cdot\dfrac{2}{3}=\dfrac{a\sqrt{3}}{3}\)

ΔSAG vuông tại G nên \(SG=\sqrt{SA^2-AG^2}=\sqrt{b^2-\dfrac{1}{3}a^2}\)

\(V_{S.ABC}=\dfrac{1}{3}\cdot S_{ABC}\cdot SG=\dfrac{1}{3}\cdot\sqrt{b^2-\dfrac{1}{3}a^2}\cdot\dfrac{a^2\sqrt{3}}{4}\)

\(=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{\dfrac{3b^2-a^2}{3}}\)

Thể tích khối tứ diện đều có cạnh bằng a là:

\(V=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a^3\sqrt{2}}{12}\)

8 tháng 7 2017

1 tháng 1 2020