K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

b/ (x+ x + 1)(x- x+ x3 - x + 1)

24 tháng 8 2016

c/ (x - 1)(2x+ 1)

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

19 tháng 6 2016

a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1

=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1

=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)

=(x2+x+1)(x5-x4+x3-x+1)

b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1

=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)

=(2x2-6x+1)(2x2+6x+1)

c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)

d)3(x4+x2+1)-(x2+x+1)

=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2

=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)

=(x2+x+1)(3x2-3x+2)

e)bạn tự làm nhé

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

\(x^4-x^3-x^2+1\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(x-1\right)\left(x^3-x-1\right)\)

\(-x-y^2+x^2-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2-x-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2+4-4x\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+2\right)\right)\left(y-x+2\right)\)

2 tháng 8 2018

a)  \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)

\(=x\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^3-16x-x^4+1\)

bạn ktra lại đề

b)  \(x^4+2x^3+5x^2+4x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

2 tháng 8 2018

Ủa pạn có thể giải ại cái bước thứ 2 đc ko ạk