K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2020

( 2x - 1 ) - x = 0

=> 2x - 1 = x

=> 2x - x = 1

=> x = 1 

( x - 1 )( 2x - 3) = 0

=> \(\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3/2 }

\(\frac{x}{x+1}=\frac{x+2}{x-1}\)( đkxđ : \(x\ne\pm1\))

Chỗ này chưa học kĩ nên chưa hiểu lắm :] 

20 tháng 5 2020

\(\left(2x-1\right)-x=0\)

\(2x-x=1\)

\(x=1\)

#hoktot

24 tháng 3 2021

\(\frac{x+5}{2x-1}-\frac{1-2x}{x+5}-2=0\left(x\ne\frac{1}{2};x\ne-5\right)\)

<=> \(\frac{\left(x+5\right)^2}{\left(2x-1\right)\left(x+5\right)}+\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(x+5\right)}-\frac{2\left(2x-1\right)\left(x+5\right)}{\left(2x-1\right)\left(x+5\right)}=0\)

=> x2 + 10x + 25 + 4x2 - 4x + 1 - 2( 2x2 + 9x - 5 ) = 0

<=> 5x2 + 6x + 26 - 4x2 - 18x + 10 = 0

<=> x2 - 12x + 36 = 0

<=> ( x - 6 )2 = 0

<=> x - 6 = 0 <=> x = 6 (tm)

Vậy ...

25 tháng 3 2021

\(\frac{x+5}{2x-1}-\frac{1-2x}{x+5}-2=0\)ĐKXĐ : \(x\ne-5;\frac{1}{2}\)

\(\Leftrightarrow\frac{\left(x+5\right)^2-\left(1-2x\right)\left(2x-1\right)}{\left(2x-1\right)\left(x+5\right)}-\frac{2\left(x+5\right)\left(2x-1\right)}{\left(x+5\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+5\right)^2+\left(2x-1\right)^2-2\left(x+5\right)\left(2x-1\right)}{\left(x+5\right)\left(2x-1\right)}=0\)

\(\Rightarrow x^2+10x+25+\left(4x^2-4x+1\right)-2\left(2x^2-x+10x-5\right)=0\)

\(\Leftrightarrow x^2+10x+25+4x^2-4x+1-4x^2-18x+10=0\)

\(\Leftrightarrow x^2-12x+36=0\Leftrightarrow\left(x-6\right)^2=0\Leftrightarrow x=6\)

Vậy tập nghiệm của phương trình là S = { 6 } 

20 tháng 3 2022

a) x(4x + 2) = 4x2 - 14

⇔ 4x2 + 2x = 4x2 - 14

⇔ 4x2 - 4x2 + 2x = -14

⇔ 2x = -14

⇔ x = -7

Vậy tập nghiệm S = ......

b) (x2 - 9)(2x - 1) = 0

⇔ x2 - 9 = 0 hoặc 2x - 1 = 0

⇔ x2 = 9 hoặc 2x = 1

⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)

Vậy .......

c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\) 

⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0

       ⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........
13 tháng 9 2018

a) \(\Leftrightarrow\left(-63x^2+78x-15\right)+\left(63x^3+x-20\right)=44\)

\(\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\)

\(\Leftrightarrow79x-35=44\)

\(\Leftrightarrow79x=44+35\)

\(\Leftrightarrow79x=79\)

\(\Leftrightarrow x=1\)

b) \(\Leftrightarrow\left(x^2+3x+2\right).\left(x+5\right)-x^2.\left(x+8\right)=27\)

\(\Leftrightarrow x.\left(x^2+3x+2\right)+5.\left(x^2+3x+2\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\)

\(\Leftrightarrow17x+10=27\)

\(\Leftrightarrow17x=17\)

\(\Leftrightarrow x=1\)

9 tháng 4 2018

có ai giải cho đâu mà cảm ơn

9 tháng 4 2018

a, 3x-2=2x-3 <=> 3x-2x=-3+2 <=> x=-1

b, 2x+3=5x+9 <=> 5x-2x=3-9 <=> 3x=-6 <=> x=-2

c, 5-2x=7 <=> 2x=5-7 <=> 2x=-2 <=> x=-1

d, x(x+2)=x(x+3) <=> x^2 + 2x = x^2 + 3x <=> 3x-2x=0 <=> x=0

e, 

18 tháng 10 2019

a) \(3x^2-2x=0\)

Phương trình này xác định với mọi x

b)\(\frac{1}{x-1}=3\)

pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)

d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)

e) \(2x=\frac{1}{x^2-2x+1}\)

pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)

\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)

\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)