K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

a,   11/13 - ( 5/42 - x ) = - (5/28 - 11/13)

    11/13 - (5/42 - x) = - 5/28 + 11/13

    - (5/42 - x) + 5/28 = -11/13 + 11/13

 - 5/42 + x + 5/28 = 0

- 5/42 + x = 0 - 5/28

- 5/42 + x = - 5/28

x = -5/28 +5/42

x = - 5/84

b, / x + 4/15 \ - / - 3,75 \ = - / - 2,15 \

./ x + 4/15 \ - 3,75 = - 2,15

/ x + 4/15 \ = -2,15 + 3,75

/ x + 4/15 \ = 1,6

x + 4 / 15 = 1,6                      hoặc x+ 4/15 = - 1,6

x = 1,6 - 4/15                                   x = - 1,6 -4/15

x = 4/3                                              x = -28/15

Vậy x = 4/3 hoặc x = - 28/15

c, ( 0,25 - 30% x ) . 1/3 = 1/4 - 31/6

( 1/4 - 3/10 x ) . 1/3 = - 59/12

( 1/4 - 3/10 x ) = - 59/12 : 1/3

1/4 - 3/10 x = - 59/4

3/10 x = 1/4 + 59/4

3/10 x = 15

x = 15 : 3/10

x = 50

d, ( x - 1/2 ) : 1/3 + 5/7 = 68/7

( x - 1/2 ) : 1/3 = 68/7 - 5/7

( x - 1/2 ) : 1/3 = 63/7

( x - 1/2 ) = 63/7 . 1/3

x -1/2 = 3 

x = 3 + 1/2

x = 7/2

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

25 tháng 7 2017

1.

a) \(\frac{-7}{9}.2\frac{3}{4}=\frac{-7}{9}.\frac{11}{4}=\frac{-77}{36}\)

b) \(\frac{2}{3}+\frac{1}{3}.\frac{-2}{5}=\frac{2}{3}+\frac{-2}{15}=\frac{8}{15}\)

c) \(\frac{3}{4}.15\frac{1}{3}-\frac{3}{4}.43\frac{1}{3}=\frac{3}{4}.\frac{46}{3}-\frac{3}{4}.\frac{130}{3}=\frac{23}{2}-\frac{65}{2}=-21\)

d) \(\left(-49,1\right).\frac{13}{27}-58,9.\frac{13}{27}=\frac{13}{27}.\left(-49,1-58,9\right)=\frac{13}{27}.\left(-108\right)=-52\)

e) \(0,375:\left(-4,5\right)=\frac{-1}{12}\)

f) \(3\frac{1}{7}:\left(-1\frac{3}{7}\right)=\frac{22}{7}:\frac{-10}{7}=\frac{-11}{5}\)

g) \(9\frac{1}{3}:4\frac{2}{3}-2=\frac{28}{3}:\frac{14}{3}-2=2-2=0\)

h) \(\left(7\frac{3}{4}:0,3125+4,5.2\frac{2}{45}\right):\left(-8,5\right)=\left(\frac{31}{4}:\frac{5}{16}+\frac{9}{2}.\frac{92}{45}\right):\frac{-17}{2}=\left(\frac{124}{5}+\frac{46}{5}\right):\frac{-17}{2}=34:\frac{-17}{2}=-4\)

25 tháng 7 2017

Bài 1 : Tính:

a)

\(\frac{-7}{9}.2\frac{3}{4}=\frac{-7}{9}.\frac{11}{4}=\frac{-77}{36}\)

b) 

\(\frac{2}{3}+\frac{1}{3}.\frac{-2}{5}=\frac{2}{3}+\frac{-2}{15}=\frac{10}{15}+\frac{-2}{15}=\frac{8}{15}\)

c)

\(\frac{3}{4}.15\frac{1}{3}-\frac{3}{4}.43\frac{1}{3}=\frac{3}{4}.\frac{46}{3}-\frac{3}{4}.\frac{130}{3}\)\(=\frac{23}{2}-\frac{65}{2}=\frac{-42}{2}=-21\)

....

Tự lm tiếp dạng như v

Bài 2 : 

\(A=\frac{-6}{11}.\frac{7}{10}.\frac{11}{-6}.-20=\left(\frac{-6}{11}.\frac{11}{-6}\right).\left(\frac{7}{10}.-20\right)\)\(=1.\left(-14\right)=-14\)

.....

Bài 3 : 

\(\frac{3}{7}.x-\frac{2}{5}.x=\frac{-17}{35}\)

\(\Leftrightarrow\frac{3}{7}-\frac{2}{5}.x=\frac{-17}{35}\)

\(\Leftrightarrow\frac{1}{35}x=\frac{-17}{35}\)

\(\Leftrightarrow x=\frac{-17}{35}:\frac{1}{35}\)

\(\Leftrightarrow x=\frac{-17}{35}.35=-17\)

22 tháng 6 2016

\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

   =  \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

    = \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

     = \(\frac{1}{4}+\frac{1}{2}\)

      =  \(\frac{3}{4}\)

b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)

    =\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)

   = \(-\frac{35}{27}+\frac{47}{21}\)

   =        \(\frac{178}{189}\)

c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)

  = \(\frac{117}{13}-\frac{311}{65}\)

 =       \(\frac{274}{65}\)

d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)

=     \(\frac{1}{3}+\frac{5}{2}\)

=         \(\frac{17}{6}\)

17 tháng 6 2015

bạn tách từng câu ra. thế này k ai làm cho đâu

28 tháng 6 2018

Đúng vậy

Bài 1: Thực hiện các phép tính dau bằng cách hợp lía. \(\frac{11}{225}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)b. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)Bài 2: Tìm x biếta. \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)b. \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)Bài 3: Thực hiện các phép tính sau bằng cách hợp lí...
Đọc tiếp

Bài 1: Thực hiện các phép tính dau bằng cách hợp lí

a. \(\frac{11}{225}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)

b. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)

Bài 2: Tìm x biết

a. \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)

b. \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

Bài 3: Thực hiện các phép tính sau bằng cách hợp lí nhất

a. \(\left(-\frac{40}{51}\cdot0,32\cdot\frac{17}{20}\right):\frac{64}{75}\)

b. \(-\frac{10}{11}\cdot\frac{8}{9}+\frac{7}{18}\cdot\frac{10}{11}\)

c. \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{29}{42}-8\)

d. \(-1\frac{5}{7}\cdot15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)

Bìa 4: Tính giá trị của các biểu thức sau

a. \(A=7x-2x-\frac{2}{3}y+\frac{7}{9}y\) với \(x=-\frac{1}{10};y=4,8\)

b. \(B=x+\frac{0,2-0,375+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{22}}\) với\(x=-\frac{1}{3}\)

0
15 tháng 10 2018

\(1,\)

\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)

\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)

\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)

\(=\dfrac{11}{125}\)

\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)

\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)

\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)

\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)

\(=-15.\left(2-\dfrac{1}{21}\right)\)

\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)

\(2,\)

\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)

\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)

\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)

\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)

\(\Leftrightarrow x=\dfrac{5}{12}\)

Vậy \(x=\dfrac{5}{12}\)

\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)

\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)

\(c,7^{x+2}+2.7^{x-1}=345\)

\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)

\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)

\(\Leftrightarrow7^{x-1}.345=345\)

\(\Leftrightarrow7^{x-1}=345:345=1\)

\(\Leftrightarrow x-1=0\)

\(x=0+1=1\)

Vậy \(x=1\)