Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây lớp 7A, 7B, 7C trồng được lần lượt là a,b,c
Ta có: \(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}=\frac{2a}{14}=\frac{b}{8}=\frac{c}{9}=\frac{2a-c}{14-9}=\frac{15}{5}=3\)
\(\Rightarrow\frac{a}{7}=3\Rightarrow a=21;\frac{b}{8}=3\Rightarrow b=24;\frac{c}{9}=3\Rightarrow c=27\)
Vậy số cây lớp 7A trồng được là 21 cây, lớp 7B là 24 cây, lớp là 27 cây
Gọi số cây ba lớp trồng được lần lượt là a (cây), b (cây), c (cây) (a, b, c > 0)
+ Vì số cây trồng của ba lớp 7A, 7B, 7C lần lượt tỉ lệ với 7, 8, 9 nên:
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\)
+ Vì hai lần số cây trồng được của lớp 7A nhiều hơn số cây trồng được của lớp 7C là 15 cây nên:
2a - c = 15
Ta có: \(\frac{a}{7}\Rightarrow\frac{2a}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}=\frac{2a}{14}=\frac{2a-c}{14-9}=\frac{15}{5}=3\)
\(\frac{a}{7}\) = 3 => a = 3 . 7 = 21 (cây)
\(\frac{b}{8}\) = 3 => b = 3 . 8 = 24 (cây)
\(\frac{c}{9}\) = 3 => c = 3 . 9 = 27 (cây)
Vậy số cây của lớp 7A là 21 cây
số cây của lớp 7B là 24 cây
số cây của lớp 7C là 27 cây
Gọi số cây 3 lớp lần lượt là a ; b và c .
Theo đề ra ta có :
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\)
Áp dụng tc of dãy tỉ số bằng nhau ta có :
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}=\frac{a-c}{7-9}=\frac{15}{-2}\)
=> Đề sai
gọi số cây mà 3 lớp 7a 7b 7c trồng được là a b c
theo bài ra ta có a/7=b/8=c/9 và 2a-c=15
áp dụng tính chất của dãy tỉ số bằng nhau ta có
a/7=b/8=c/9=2a-c/2.7-9=15/5=3
a/7=3→a=7.3=21
b/8=3→b=8.3=24
c/9=3→c=9.3=27
vậy số cây trồng được của 3 lớp 7a 7b 7c lần lượt là 21, 24, 27
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a,b,c
Theo đề, ta có: a/6=b/4=c/5 và a+b-c=50
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b-c}{6+4-5}=\dfrac{50}{5}=10\)
=>a=60; b=40; c=50
Gọi số cây của ba lớp 7A ; 7B ; 7C lần lượt là a ; b và c ( cây ) ( a , b , c ∈ N* )
Theo bài ra , ta có :
b + c - a = 15
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{5}=\frac{b+c-a}{4+5-6}=\frac{15}{3}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.6=30\\b=5.4=20\\c=5.5=25\end{cases}}\)
Gọi số cây trồng được của 3 lớp 7A ; 7B ; 7C lần lượt là x,y,z (x,y,z \(\inℕ^∗\))
Theo bài ra ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(2x-y=8\)
=> \(\frac{2x}{4}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{2x}{4}=\frac{y}{3}=\frac{z}{5}=\frac{2x-y}{2.2-3}=\frac{8}{1}=8\)
=> x = 8 . 2 =16
y = 8 . 3 = 24
z = 8 . 5 = 40
Vậy............................................
Học tốt
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a(cây), b(cây),c(cây)
(Điều kiện: \(a\in Z^+;b\in Z^+;c\in Z^+\))
Số cây của lớp 7A,7B,7C lần lượt tỉ lệ với 6;4;5 nên ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}\)
Tổng số cây trồng được của 2 lớp 7A,7B nhiều hơn của lớp 7C là 50 cây nên ta có: a+b-c=50
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b-c}{6+4-5}=\dfrac{50}{5}=10\)
=>a=60;b=40;c=50
Vậy: Lớp 7A trồng được 60 cây
Lớp 7B trồng được 40 cây
Lớp 7C trồng được 50 cây
Gọi số cây của 3 lớp 7A,7B,7C lần lượt là a,b,c tỉ lệ với 7,8,9 => \(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\) và 2a - c = 15
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{7}=\frac{c}{9}=\frac{2a-c}{14-9}=\frac{15}{5}=3\)
=> \(\begin{cases}a=21\\b=24\\c=27\end{cases}\)
Bạn chưa kết luận nhé!