K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

1+1=2 nha bạn

mình chắc 100% luôn

13 tháng 4 2017

2 nhé cường tk mk nhá

3 tháng 9 2019

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\) 

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\) 

\(\Leftrightarrow x=10\)

3 tháng 9 2019

 ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)

\(\Leftrightarrow\sqrt{x}-2=3\)

\(\Leftrightarrow\sqrt{x}=5\)

\(\Rightarrow x=5^2=25\)

26 tháng 4 2018

Ghi sai đề đúng ko bạn? Bài này đúng hình như là chứng minh nó có nghiệm hay vô nghiệm chứ???

6 tháng 11 2017

ai thì kb với mk nha

NV
22 tháng 4 2021

Đặt \(\sqrt{2x^2+3x+2}=t>0\)

\(\Rightarrow4x^2+6x+21=2t^2+17\)

Phương trình trở thành:

\(t+\sqrt{2t^2+17}=11\Leftrightarrow\sqrt{2t^2+17}=11-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}11-t\ge0\\2t^2+17=\left(11-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le11\\t^2+22t-104=0\end{matrix}\right.\)

\(\Rightarrow t=4\Leftrightarrow2x^2+3x+2=16\)

\(\Leftrightarrow2x^2+3x-14=0\)

\(\Leftrightarrow...\)

26 tháng 1 2016

\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16+1\right)=6x\)
\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16\right)+x^2+9-6x=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2=0\)
\(\left(x^2+9\right)\left(x-4\right)^2\ge0\)
Dấu "=" xảy ra <=> x=4
\(\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> x=3
\(\Rightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> đồng thời x=4 và x=3 -> vô nghiệm