K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Do các số này không theo thứ thự mà bắt đầu từ 32 , nó mới có thứ tự

Vậy ta chỉ tính từ 32 đến 32006

Số số hạng của tổng là :

( 32006 - 32 ) : 1 + 1 = 31975 ( số số hạng )

Tổng cần tìm là : 

( 32006 + 32 ) . 31975 : 2 = 512207525

Do 1 còn ngoài tổng nên :

512207525 + 1 = 512207526

Số dư khi S chia cho 13 :

512207526 : 13 =  39400578 ( dư 12 )

Đáp số : 12

9 tháng 10 2016

Chúc bạn học tốt ! banhqua

9 tháng 10 2016

Mình đã làm 1 trong 3 bài bạn đăng rồi , bạn tham khảo nhé !

9 tháng 10 2016

Mình làm 1 trong 3 bài của bạn đăng rồi , bạn xem nhé !

19 tháng 12 2016

S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )

= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )

= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )

= 1 + 3.13 + 34 .13 +  .... + 398.13

= 1 + 13 ( 3 + 34 + ... + 398 ) 

Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1

hay S chia 13 dư 1

21 tháng 12 2016

Sao cô giáo minh lại bảo số dư là 4 cơ:

ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)

S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))

=4.13.(3\(^2\)+...+3\(^{98}\))

Vậy S chia cho 13 dư4

16 tháng 4 2017

ai trả lời giùm cái

13 tháng 6 2018

1/

a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120

=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)

=> 2A = 3^120 - 1

=> A = (3 ^120 - 1)/2

b/ 2A + 1 = 27x

<=> 3^120 = 27x

<=> 27^40 = 27x

<=> x = 40

c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)

= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)

= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)

= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5

+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)

= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)

= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)

= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13

13 tháng 6 2018

2b

Câu hỏi của Raf - Toán lớp 6 - Học toán với OnlineMath