Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)
\(\Leftrightarrow x^2y^2+x^2+y^2+1-2\left(x-y\right)\left(xy-1\right)=4+4xy\)
\(\Leftrightarrow\left(x^2y^2-2xy+1\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)\left(xy-1\right)=4\)
\(\Leftrightarrow\left(xy-1\right)^2-2\left(x-y\right)\left(xy-1\right)+\left(x-y\right)^2=4\)
\(\Leftrightarrow\left(xy-1-x+y\right)^2=4\)
\(\Leftrightarrow\left[\left(x+1\right)\left(y-1\right)\right]^2=4\)
\(\Leftrightarrow\left(x+1\right)^2\left(y-1\right)^2=4=1.4\)
Vì \(\left(x+1\right)^2;\left(y-1\right)^2\) là các SCP và đều không âm nên ta chỉ cần xét các TH sau:
TH1: \(\hept{\begin{cases}\left(x+1\right)^2=1\\\left(y-1\right)^2=4\end{cases}}\) => \(\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\) và \(\orbr{\begin{cases}y-1=2\\y-1=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\) và \(\orbr{\begin{cases}y=3\\y=-1\end{cases}}\)
TH2: \(\hept{\begin{cases}\left(x+1\right)^2=4\\\left(y-1\right)^2=1\end{cases}}\) => \(\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\) và \(\orbr{\begin{cases}y-1=1\\y-1=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\) và \(\orbr{\begin{cases}y=2\\y=0\end{cases}}\)
Kết luận:...
\(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)
\(\Leftrightarrow\left(1-2xy+x^2y^2\right)+2\left(x-y\right)\left(1-xy\right)=4+4xy\)
\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x^2-2xy+y^2\right)=4\)
\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x-y\right)^2=4\)
\(\Leftrightarrow\left(1-xy+x-y\right)^2=4\)
\(\Leftrightarrow\left[\left(x+1\right)\left(1-y\right)\right]^2=2^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(1-y\right)=2\\\left(x+1\right)\left(1-y\right)=-2\end{cases}}\)
Tự xét các TH
Lớp 8 nên sử dụng hằng đẳng thức
(=) X3 +3x2 +y3+5y2-x3-y3=0
(
Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2
<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0
<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0
<=> x4 - x3 - x2 - 5x - 2 = 0
?
2) Viết nhầm thì phải, vế phải là 12 nhỉ
\(x\left(x-1\right)+y\left(y-1\right)=x^2+y^2-\left(x+y\right)\ge\dfrac{\left(x+y\right)^2}{2}-\left(x+y\right)\ge\dfrac{6^2}{2}-6=12\)
1) \(x\ge2y>0\Rightarrow x^3\ge8y^3\)
\(P=\dfrac{x^2+y^2}{xy}=\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{4y^2}{4xy}\ge5\sqrt[5]{\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{4y^2}{4xy}}=5\sqrt[5]{\dfrac{x^3}{256y^3}}\ge5\sqrt[5]{\dfrac{8y^3}{256y^3}}=5\sqrt[5]{\dfrac{1}{32}}=\dfrac{5}{2}\)
Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
kết quả mình là ;x2y2+4xy-5