Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D b a
Vì câu a dễ nên mik chỉ làm câu b thôi nhé --hơi dài đấy , cần kiên nhẫn đọc--hoặc tham khảo cách nào ngắn gọn hơn cũng được , hình chỉ minh họa , độ chính xác ko cao
====================
Kẻ BH là đường cao của tam giác ABC
\(\Delta BAD\) cân tại B ( BA=BD) có BH là đường cao nên cũng là đường trung tuyến
=> AH = \(\frac{AD}{2}\)
\(\Delta ABC\) có BD là đường phân giác trong nên : \(\frac{DA}{DC}=\frac{AB}{BC}=\frac{b}{a}\)
=>\(\frac{DA}{b}=\frac{DC}{a}=\frac{DA+DC}{a+b}=\frac{AC}{a+b}=\frac{b}{a+b}\)=> \(DA=\frac{b^2}{a+b}\)
\(\Delta HAB\) vuông tại H , theo định lí Pi - ta - go ta có :
AB2 = BH2 + AH2 => BH2 = AB2 -AH2 = \(b^2-\frac{AD^2}{4}\) (1)
\(\Delta HBC\) vuông tại H , theo định lí Pi-ta-go , ta suy ra :
BH2 = BC2 - HC2 = BC2 - (AC - AH)2 = \(a^2-\left(b-\frac{AD}{2}\right)^2\)= \(a^2-b^2+b.AD-\frac{AD^2}{4}\left(2\right)\)
Từ (1) và (2) ta suy ra :
\(b^2-\frac{AD^2}{4}\) = \(a^2-b^2+b.AD-\frac{AD^2}{4}\left(2\right)\)
<=> \(b^2-a^2=b.AD-b^2\)
<=>\(\left(b-a\right)\left(b+a\right)=b.\frac{b^2}{a+b}-b^2\)
<=>\(\left(b-a\right)\left(b+a\right)=\frac{-ab^2}{a+b}\)
<=>\(\frac{a-b}{ab}=\frac{b}{\left(a+b\right)^2}\)
<=>\(\frac{1}{a}-\frac{1}{b}=\frac{b}{\left(a+b\right)^2}\) (đpcm)
Sao cách của bn giống hệt sách kẻ thêm hình phụ của nguyễn đức tấn nhỉ :)))
a.) từ các tia phân giác suy ra được OE/OB=AE/AB=EC/BC
suy ra AE/c=EC/a
áp dụng tính chất dãy tỉ số bằng nhau ta có :
AE/c=EC/a=AE+EC/c+a=AC/c+a=b/c+a
suy ra AE=bc/c+a
tương tự ta có AF=bc/a+b
ta có OB/OE=AB/AE=c/AE
suy ra OB/OE+OB=c/AE+c (ko bik bạn học cái này chưa)
OB/BE=c/AE+c(1)
tương tự ta lại có OC/CF=b/AF+b(2)
từ (1) và (2) suy ra OB.OC/BE.CF=bc/(AE+c)(AF+b)=1/2
nhân chéo ta có 2bc=(AE+c)(AF+b)=(bc/(c+a)+c)(bc/(a+b)+b)
2bc=(c(a+b+c)/(a+c))(b(a+b+c)/(a+b))
2bc=bc(a+b+c)^2/(a+c)(a+b)
2=(a+b+c)^2/(a+c)(a+b)
suy ra (a+b+c)^2=2(a+c)(a+b)
tách ra rút gọn còn a^2=b^2+c^2
suy ra tam giác ABC vuông tại A