K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Lấy biểu thức A chia cho n-5

ta được số dư là 3 để A chia hết cho n-5 thì n-5 E Ứ(3)

=> n-5 E {-1;-3;1;3}

=> n E {-6;-7;-4;-2}

3 tháng 1 2019

bn shitbo oy, mk ko bk bn lm tek nào mak ra kq ý, nhưng mk lại lm ra #, mong bn xem lại !!! :)

...

ta có: A = n^4 - 5n^3 - 3n^2 + 17n + 13 chia hết cho n - 5 

=> n^4 - 5n^3 - 3n^2 + 15n + 2n - 10 + 23 chia hết cho n - 5 

n^3.(n-5) - 3n.(n-5) + 2.(n-5) + 23 chia hết cho n - 5 

(n-5).(n^3 - 3n+2) + 23 chia hết cho n - 5 

mà (n-5).(n^3 - 3n+2) chia hết cho n - 5 

=> 23 chia hết cho n - 5 

=>...

bn tự làm tiếp nha

3 tháng 1 2019

Hỏi đáp Toán

15 tháng 12 2016

làm câu

27 tháng 10 2019

Câu 1 cậu lên mạng tra định ký Bơdu nhé

Câu 2 ta lấy f(x) chia cho g(x) đc x + 6 dư n+12

Để f(x) chia hết cho g(x) thì ta cho n+12=0

=> n= -12

Vậy để f(x) chia hết cho g(x) <=> n = -12

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

26 tháng 6 2020

a)\(\frac{-2n^3+n^2-5n}{2n+1}\)= \(\frac{-n^2\left(2n+1\right)+n\left(2n+1\right)-6n}{2n+1}\)=\(\frac{\left(2n+1\right)\left(2n-1\right)-6n}{2n+1}\)

=\(\left(n-n^2\right)-\frac{6n}{2n+1}\)=\(\left(n-n^2\right)-\frac{3\left(2n+1\right)-3}{2n+1}\)=\(\left(n-n^2\right)-3-\frac{3}{2n+1}\)

Để (-2n3+n2-5n)⋮(2n+1) thì n∈Z

⇒n∈Z thì (2n+1)∈Ư(3)=\(\left\{-1;-3;1;3\right\}\)

Ta có bảng sau:

2n+1 1 3 -1 -3
n 0 1 -1 -2

Vậy n=(0;1;-1;-2) thì (-2n3+n2-5n) chia hết cho (2n+1).

b)\(\frac{3n^3+10n^2-5}{3n+1}\)=\(\frac{n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-4}{3n+1}\)

=\(\frac{\left(3n+1\right)\left(n^2+3n-1\right)-4}{3n+1}\)=\(\left(n^2+3n-1\right)-\frac{4}{3n+1}\)

Để (3n3+10n2-5)⋮(3n+1) thì n∈Z

⇒n∈Z thì (3n+1)∈Ư(4)=\(\left\{1;2;4;-1;-2;-4\right\}\)

Ta có bảng sau:

3n+1 1 2 4 -1 -2 -4
n 0 \(\frac{1}{3}\) 1 \(\frac{-2}{3}\) -1 \(\frac{-5}{3}\)

Vì n∈Z nên ta loại (\(\frac{1}{3}\) ;\(\frac{-2}{3}\); \(\frac{-5}{3}\)) .

Vậy n=(0;1;-1) thì (3n3+10n2-5) chia hết cho (3n+1).

chúc bạn học tốt ^_^

Bài 2: 

a: Để A là số nguyên thì \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)(do n là số nguyên)

b: Để B là số nguyên thì \(n^3-4n^2+5n-1⋮n-3\)

\(\Leftrightarrow n^3-3n^2-n^2+3n+2n-6+5⋮n-3\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)