Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng chữ số hàng đơn vị và hàng chục của limx->1 \(\frac{x^{2020}-2020x+ 2019}{\left(x-1\right)^2}\)
\(\lim\limits_{x\rightarrow1}\frac{x^{2020}-2020x+2019}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\frac{2020x^{2019}-2020}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{2019.2020.x^{2018}}{2}=\frac{2019.2020}{2}=2039190\)
Tổng chữ số hàng chục và đơn vị là 9
\(\lim\limits_{x\rightarrow-\infty}\left(4x^5-3x^2+1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(4-\frac{3}{x^3}+\frac{1}{x^5}\right)=-\infty.4=-\infty\)
\(\lim\limits_{x\rightarrow4}\frac{1-x}{\left(x-4\right)^2}=\frac{-3}{0}=-\infty\)
Câu tiếp theo đề thiếu, ko thấy yêu cầu gì hết
\(a=\lim\limits_{x\rightarrow3}\frac{\left(x-3\right)\left(2x+3\right)}{\left(x-3\right)\left(x^3+3x^2+9x\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3}{x^3+3x^2+9x}=\frac{2.3+3}{3^3+2.3^2+9.3}=...\)
\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^4+x^2+2x^3+2x+2\right)}=\frac{1+1}{1+1+2+2+2}=...\)
\(c=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)^2\left(4x^3+3x^2+2x+1\right)}{\left(x-1\right)^2\left(x^2+x+2\right)}=\frac{4+3+2+1}{1+1+2}=...\)
\(d=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1+1+1+1+1}{1+1+1}=...\)
\(Lim_{x\rightarrow3}\frac{x^4-27x}{2x^2-3x-9}=Lim_{x\rightarrow3}\frac{x\left(x^3-3^3\right)}{\left(x-3\right)\left(2x+3\right)}\)
\(=Lim_{x\rightarrow3}\frac{x\left(x-3\right)\left(x^2+3x+9\right)}{\left(x-3\right)\left(2x+3\right)}=Lim_{x\rightarrow3}\frac{x\left(x^2+3x+9\right)}{2x+3}\)
\(=\frac{3\left(3^2+3.3+9\right)}{3.2+3}=\frac{3\left(9+9+9\right)}{9}=9\)
Vậy \(Lim_{x\rightarrow3}\frac{x^4-27x}{2x^2-3x-9}=9\)
Từ công thức truy hồi ta có:
\(x_{n+1}>x_n,\forall n=1,2...\)
\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng
giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)
Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)
=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)
Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)
\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)
Bạn cần viết đề bằng công thức toán (hộp có biểu tượng $\sum$ ở góc bên trên) để được hỗ trợ tốt hơn. Viết thế này không dịch được ạ.
Do quá làm biếng dùng Hoocne tách nhân tử nên chúng ta sẽ sử dụng L'Hopital:
\(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)
\(\lim\limits_{x\rightarrow-3}\frac{x^4-6x^2-27}{x^3+3x^2+x+3}=\lim\limits_{x\rightarrow-3}\frac{4x^3-12x}{3x^2+6x+1}=\frac{-36}{5}\)
\(\lim\limits_{x\rightarrow-2}\frac{2x^3+x^2+12}{-x^2-6x-8}=\lim\limits_{x\rightarrow-2}\frac{6x^2+2x}{-2x-6}=-10\)
\(\lim\limits_{x\rightarrow-2}\frac{-2x^3+x-14}{-2x^3-x^2-12}=\lim\limits_{x\rightarrow-2}\frac{-6x^2+1}{-6x^2-2x}=\frac{23}{20}\)
Con cuối ko phải tích phân dạng vô định \(\frac{0}{0}\) bạn cứ thế thẳng -2 vào là được
Lời giải:
\(\lim\limits_{x\to 4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\to 4}\frac{(x+5)-(2x+1)}{(\sqrt{x+5}+\sqrt{2x+1})(x-4)}=\lim\limits_{x\to 4}\frac{4-x}{(\sqrt{x+5}+\sqrt{2x+1})(x-4)}\)
\(=\lim\limits_{x\to 4}\frac{-1}{\sqrt{x+5}+\sqrt{2x+1}}=\frac{-1}{\sqrt{4+5}+\sqrt{2.4+1}}=\frac{-1}{6}\)