Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}< 1\)
\(A=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}\)
A=\(\frac{1}{1}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
A=\(1-\frac{1}{10^2}\)
A=\(1-\frac{1}{100}\)
A=\(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}< 1\)
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
a) \(x>2x\)
\(\Rightarrow x-2x>0\)
\(x\left(1-2\right)>0\)
\(-x>0\)
\(\Rightarrow x< 0\)
b) \(\left(x-1\right)\left(x-2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
c) \(\left(x-2\right)^2.\left(x+1\right)\left(x-4\right)< 0\)
Mà \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)\left(x-4\right)< 0\)
Mà \(x+1>x-4\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}}\)
\(\Rightarrow-1< x< 4\)
d) \(x^3< x^2\)
\(\Rightarrow x^3-x^2< 0\)
\(\Rightarrow x^2\left(x-1\right)< 0\)
\(x^2;x-1\)phải \(\ne\)0
Có \(x^2>0\); do đó \(x-1< 0\)
\(\Rightarrow x< 1\)
Để ( 2x - 1/2 ) ( 3x - 1/3 ) < 0 thì xảy ra 2 trường hợp :
TH1 : 2x - 1/2 > 0 và 3x - 1/3 < 0
\(\Rightarrow\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}\Rightarrow}x\in\varnothing}\)
TH2 : 2x - 1/2 < 0 và 3x - 1/3 > 0
\(\Rightarrow\hept{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>\frac{1}{9}\end{cases}\Rightarrow\frac{1}{9}< x< \frac{1}{4}}}\)
Vậy,...........