Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.
b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$
c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:
Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.
Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.
Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$
và
$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)
Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)
Vậy đường thẳng Δ có dạng: x+y-3=0
Vì đường tròn có tâm I thuộc d nên I(a;-a)
Vì đường tròn đi qua A, B nên I A 2 = I B 2 ⇒ (3 - a ) 2 + a 2 = a 2 + (2 + a ) 2 ⇔ (3 - a ) 2 = (2 + a ) 2
Vậy phương trình đường tròn có dạng:
Ta có:
Giả sử elip (E) có dạng:
Vì (E) đi qua B nên:
Mà
Vậy phương trình chính tắc của elip (E) là:
1: Gọi I(0,y) là tâm cần tìm
Theo đề, ta có: IA=IB
=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)
=>y^2-10y+25+9=y^2+14y+49+1
=>-10y+34=14y+50
=>-4y=16
=>y=-4
=>I(0;-4)
=>(x-0)^2+(y+4)^2=IA^2=90
2: Gọi (d1) là đường thẳng cần tìm
Vì (d1)//(d) nên (d1): 4x+3y+c=0
Theo đề, ta có: d(I;(d1))=3 căn 10
=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)
=>|c-12|=15căn 10
=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)
a, Bán kính: \(R=2\sqrt{545}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=2180\)
Giao điểm của \(\left(C\right);\left(d\right)\) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x+3y+5=0\\\left(x+1\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y-5\\\left(-3y-4\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow...\)
(x-x0)^2+(y-y0)^2=R^2
I(x;x-6)
=> (x-6)^2+(x-6-4)^2=R^2
(x-4)^2+(x-6)^2=R^2
=> x^2-12x+36+x^2-20x+100=x^2-8x+16+x^2-12x+36
=>12x=84
=>x=7
=>R^2=10
`=>(7-x0)^2+(1-y0)^2=10`
a) Ta có phương trình đường tròn là \(({C_1}):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 81\)
b) Ta có: \(\overrightarrow {IA} = (3;3) \Rightarrow IA = 3\sqrt 2 = R\)
Suy ra phương trình đường tròn là; \({C_2}:{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 18\)
c) Vì tâm đường tròn nằm trên đường thẳng \(4x + y - 16 = 0\) nên có tọa độ \(I\left( {a;16 - 4a} \right)\)
Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} ,IB = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)
A, B thuộc đường tròn nên \(IA = IB \Rightarrow \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)
\(\begin{array}{l} \Rightarrow {\left( {a - 4} \right)^2} + {\left( {16 - 4a - 1} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {16 - 4a - 5} \right)^2}\\ \Rightarrow {\left( {a - 4} \right)^2} + {\left( {15 - 4a} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {11 - 4a} \right)^2}\\ \Rightarrow - 28a = - 84 \Rightarrow a = 3\end{array}\)
Suy ra tâm đường tròn là \(I(3;4)\), bán kính \(R = IA = \sqrt {10} \)
Phương trình đường tròn trên là \(({C_3}):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 10\)
d) Giả sử phương trình đường tròn có dạng \({x^2} + {y^2} - 2mx - 2ny + p = 0\) (với tâm \(I(m;n),R = \sqrt {{m^2} + {n^2} - p} \))
Đường tròn đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b nên ta có hệ phương trình:
Ta có điều kiện \(a,b \ne 0\), vì khi bằng 0 thì trùng với gốc tọa độ
\(\left\{ \begin{array}{l}{0^2} + {0^2} - 2m.0 - 2n.0 + p = 0\\{a^2} + {0^2} - 2ma - 2n.0 + p = 0\\{0^2} + {b^2} - 2m.0 - 2nb + p = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\{a^2} - 2ma = 0\\{b^2} - 2nb = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\m = \frac{a}{2}\\n = \frac{b}{2}\end{array} \right.\)
Vậy phương trình chính tắc của đường tròn trên là \({x^2} + {y^2} - ax - by = 0\)