K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

S =2\(\sqrt{28}\)

P =1

X2 - 2\(\sqrt{28}\) X +1 =0

27 tháng 11 2015

sao mình tính \(S=4\sqrt{502}\)

28 tháng 7 2016

Bài 2:

\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{2005}}{-4}\)

\(=\frac{\sqrt{2005}-1}{4}\)

14 tháng 8 2015

\(\sqrt{2009}-\sqrt{2008}<\sqrt{2008}-\sqrt{2007}\)

14 tháng 8 2015

\(\frac{1}{\sqrt{2009}-\sqrt{2008}}=\frac{\sqrt{2009}+\sqrt{2008}}{\left(\sqrt{2009}+\sqrt{2008}\right)\left(\sqrt{2009}-\sqrt{2008}\right)}=\frac{\sqrt{2009}+\sqrt{2008}}{2009-2008}=\sqrt{2009}+\sqrt{2008}\)

CMTT : \(\frac{1}{\sqrt{2008}-\sqrt{2007}}=\sqrt{2008}+\sqrt{2007}\)

Vì \(\sqrt{2009}+\sqrt{2008}>\sqrt{2008}+\sqrt{2007}\)

=> \(\frac{1}{\sqrt{2009}-\sqrt{2008}}<\frac{1}{\sqrt{2008}-\sqrt{2007}}\)

=> \(\sqrt{2009}-\sqrt{2008}>\sqrt{2008}-\sqrt{2007}\)

13 tháng 8 2017

Easy

Ta có:

\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)

\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

13 tháng 8 2017

Easy

Ta có:

\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)

\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)