K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

a) \(\exists x\in R:x.1\ne x\)

mệnh đề phủ định sai.

b) \(\exists x\in R:x.x\ne1\)

mệnh đề phủ định đúng.

c) \(\exists n\in Z:n\ge n^2\)

mệnh đề phủ định đúng.

15 tháng 4 2017

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.

d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"

Đây là mệnh đề sai vì với x= ta có :

3 =+1

2 tháng 4 2017

a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R mà 02=0.

b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.

c) ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.

d) ∃ x∈R: x< = "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <.


10 tháng 1 2017

\(\overline{P}=\exists x\in R:x^2+4\le0\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).

b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} >  2.2 - 1\) hay \(4 > 3\) (luôn đúng).

c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).

d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.

16 tháng 10 2023

loading...  loading...  loading...  

5 tháng 7 2019

\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)

\(\exists x\in R,x\le2\Rightarrow x^2\le4\)

\(\exists x\in R,x^2\le4\Rightarrow x\le2\)

5 tháng 7 2019

Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha

Lập mệnh đề phủ định của các mệnh đề sau:

a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)

b) \(\forall x\in R,x>2\Rightarrow x^2>4\)

c) \(\forall x\in R,x^2>4\Rightarrow x>2\)

d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)

Cảm on nhiều ạ

16 tháng 5 2017

a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai)

b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng)

c) Với mọi số thực \(x\) , \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)

d) Có một số thực \(x\), mà \(\dfrac{x^2-1}{x-1}=x+1\) (mênh đề đúng)

e) Với mọi số thực \(x\) , \(x^2+x+1>0\) (mệnh đề đúng)

f) Có một số thực \(x\)\(x^2+x+1>0\) (mệnh đề đúng)

9 tháng 9 2017

a) với mọi x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề sai)

b) một vài x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề đúng)

c) với mọi x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)

d) một vài x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề đúng)

e) với mọi x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)

f) một vài x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)

28 tháng 9 2023

\(9x^2-1=0\)

\(x^2=\dfrac{1}{9}\)

\(\Rightarrow x=\pm\dfrac{1}{3}\Rightarrow x\in Q\)

Chọn A

28 tháng 9 2023

Thầy ơi nếu \(\forall n\in N:n^2>n\) mà với \(n=0;n=1\) thì mệnh đề \(C\) sai chứ ạ!