\(S=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2k+1}\left(k\i...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

28 tháng 9 2016

Mk sửa đề chỗ thừa số cuối nhé, có lẽ bn chép sai đề

\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{n^2}\right)\)

\(=\frac{3}{4}.\frac{8}{9}...\frac{n^2-1}{n^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{\left(n-1\right).\left(n+1\right)}{n.n}\)

\(=\frac{1.2...\left(n-1\right)}{2.3...n}.\frac{3.4...\left(n+1\right)}{2.3...n}\)

\(=\frac{1}{n}.\frac{n+1}{2}=\frac{n+1}{2n}\)

 

26 tháng 8 2021

3. a) \(đk:x\ne1;x\ne-2\)

Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:

x-11-12-2
x203-1

Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:

x+21-15-5
x-1-33-7

b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)

a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)

b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)

\(M=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right).....\left(\frac{1}{100}-1\right)\left(\frac{1}{121}-1\right)=\frac{-3}{4}.\frac{-8}{9}.....\frac{-99}{100}.\frac{-120}{121}\)

\(M=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.....\frac{-9.11}{10.10}.\frac{-10.12}{11.11}=\frac{-1}{2}.\frac{-12}{11}=\frac{12}{22}=\frac{6}{11}\)

\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{99}\)

\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{9.11}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(S=\frac{5}{11}\)

\(Q=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2013.2015}\)

\(Q=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(Q=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(Q=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)

\(Q=\frac{1007}{2015}\)

~ Đấng Ed :) ~ 

26 tháng 7 2019

\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{100}-1\right)\)

\(-A=\left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right)...\left(1-\frac{1}{100}\right)\)

\(-A=\frac{9}{10}\cdot\frac{10}{11}\cdot\frac{11}{12}\cdot...\cdot\frac{99}{100}\)

\(-a=\frac{9}{100}\)

\(A=-\frac{9}{100}\)

26 tháng 7 2019

Bài 1.

Ta có: \(\frac{a}{b}+\frac{-a}{b+1}=\frac{a}{b}-\frac{a}{b+1}=a\left(\frac{1}{b}-\frac{1}{b+1}\right)=a\left(\frac{b+1-b}{b\left(b+1\right)}\right)=a\left(\frac{1}{b\left(b+1\right)}\right)=\frac{a}{b\left(b+1\right)}\)

=> A là đáp án đúng

Bài 2. Ta có:

B = 4x - 4y + 5xy

B= 4x - 4y + 4xy + xy

B = 4(x - y + xy) + xy

B = 4.(5/12 - 1/3) - 1/3

B = 4.1/12 - 1/3
B = 1/3 - 1/3 = 0