K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

28 tháng 9 2016

Mk sửa đề chỗ thừa số cuối nhé, có lẽ bn chép sai đề

\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{n^2}\right)\)

\(=\frac{3}{4}.\frac{8}{9}...\frac{n^2-1}{n^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{\left(n-1\right).\left(n+1\right)}{n.n}\)

\(=\frac{1.2...\left(n-1\right)}{2.3...n}.\frac{3.4...\left(n+1\right)}{2.3...n}\)

\(=\frac{1}{n}.\frac{n+1}{2}=\frac{n+1}{2n}\)

 

9 tháng 4 2017

ko bít

4 tháng 5 2017

Bài này dễ ,lớp 6 còn làm đc!

18 tháng 7 2018

\(3S=3\left(\frac{1}{2.5}+....+\frac{1}{\left(3n+1\right)\left(3n+2\right)}\right)\)

Đến đây thì bạn làm như dạng đơn giản nhé

17 tháng 3 2016

S=1-1/7-(1/7)^3-......-(1/7)^2017

49S=49-7-1/7-(1/7)^3-.,.....-(1/7)^2015

49S-S=48S=49-7-1-(1/7)^2017

48S=41-(1/7)^2017

S=41/48-(1/7)^2017/48

k nha

2 tháng 3 2017

theo mik là vì dạng 2 là TBC của số chẵn nên fai là 2k

14 tháng 3 2017

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{100}\left(1+2+3+....+100\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+.....+\frac{1}{100}.\frac{100\left(100+1\right)}{2}\)

\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{100+1}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{101}{2}\)

\(=\frac{2+3+4+....+101}{2}\)

\(=\frac{\frac{101\left(101+1\right)}{2}-1}{2}=5150.5\)

4 tháng 2 2019

1) tự làm (thực hiện từ dưới lên)

2) B = \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{4}\right)^5.3}{\frac{\frac{1}{1024}.1}{3}-\left(\frac{1}{2}\right)^{11}}\)

      = \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{2}\right)^{10}.3}{\left(\frac{1}{2}\right)^{10}.\frac{1}{3}-\left(\frac{1}{2}\right)^{10}.\frac{1}{2}}\)

     = \(\frac{\left(\frac{1}{2}\right)^{10}.\left(5-3\right)}{\left(\frac{1}{2}\right)^{10}.\left(\frac{1}{3}-\frac{1}{2}\right)}\)

     = \(\frac{2}{-\frac{1}{6}}\)= 2 . (-6) = -12

4 tháng 2 2019

1) \(5+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}=5+\frac{15}{7}=\frac{5}{1}+\frac{15}{7}=\frac{50}{7}\)