Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f'(x)=g(x)\)
\(\Leftrightarrow 6\sin ^22x\cos 2x=4\cos 2x-5\sin 4x\)
\(\Leftrightarrow 3\sin ^22x\cos 2x=2\cos 2x-5\sin 2x\cos 2x\)
\(\Leftrightarrow \cos 2x(3\sin ^22x-2+5\sin 2x)=0\)
\(\Leftrightarrow \cos 2x(3\sin 2x-1)(\sin 2x+2)=0\)
\(\Rightarrow \left[\begin{matrix} \cos 2x=0\\ \sin 2x=\frac{1}{3}\\ \sin 2x=-2\end{matrix}\right.\)
Với \(\cos 2x=0\Rightarrow x=\frac{\pm \pi}{4}+k\pi (k\in\mathbb{Z})\)
Với \(\sin 2x=\frac{1}{3}\Rightarrow x=\frac{1}{2}\arcsin \frac{1}{3}+k\pi \) hoặc \(x=\pi -\frac{1}{2}\arcsin \frac{1}{3}+k\pi\)
Với \(\sin 2x=-2\) thì loại vì $\sin 2x\in [-1;1]$
b) \(f'(x)=g(x)\)
\(\Leftrightarrow -x^2\sin x+4x\cos ^2\frac{x}{2}=x-x^2\sin x\)
\(\Leftrightarrow 4x\cos ^2\frac{x}{2}=x\)
\(\Leftrightarrow x(4\cos ^2\frac{x}{2}-1)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ \cos ^2\frac{x}{2}=\frac{1}{4}\rightarrow \cos \frac{x}{2}=\pm \frac{1}{2}\end{matrix}\right.\)
Với \(\cos \frac{x}{2}=\frac{1}{2}\Rightarrow x=\pm \frac{2\pi}{3}+4k\pi \) với $k$ nguyên.
Với \(\cos \frac{x}{2}=\frac{-1}{2}\Rightarrow x=\frac{-4\pi}{3}+4k\pi \) với $k$ nguyên.
Hàm số f(x) = x3 + 2x - 1 xác định trên R và x0 = 3 ∈ R.
f(x) = (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3)
nên hàm số đã cho liên tục tại điểm x0 = 3.
a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)
Khai triển \(\left(2-3x^2+x^3\right)^5\)
\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)
Hệ số của số hạng chứa \(x^9\):
\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)
b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)
\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)
\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)
Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)
\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)
\(=C_5^4+C_5^3+...+C_{22}^3\)
\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)
Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)
a: \(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}3x^2-2x+4\)
\(=3\cdot\left(-2\right)^2-2\cdot\left(-2\right)+4\)
\(=3\cdot4+4+4=20\)
\(f\left(-2\right)=3\cdot\left(-2\right)^2-2\left(-2\right)+4=20\)
=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)
=>Hàm số liên tục tại x=-2
b: \(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}2x^3-3x^2+1\)
\(=2\cdot3^3-3\cdot3^2+1\)
\(=2\cdot27-27+1=27+1=28\)
\(f\left(3\right)=2\cdot3^3-3\cdot3^2+1=54-27+1=28\)
=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\)
=>Hàm số liên tục tại x=3