K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

a) \(f'(x)=g(x)\)

\(\Leftrightarrow 6\sin ^22x\cos 2x=4\cos 2x-5\sin 4x\)

\(\Leftrightarrow 3\sin ^22x\cos 2x=2\cos 2x-5\sin 2x\cos 2x\)

\(\Leftrightarrow \cos 2x(3\sin ^22x-2+5\sin 2x)=0\)

\(\Leftrightarrow \cos 2x(3\sin 2x-1)(\sin 2x+2)=0\)

\(\Rightarrow \left[\begin{matrix} \cos 2x=0\\ \sin 2x=\frac{1}{3}\\ \sin 2x=-2\end{matrix}\right.\)

Với \(\cos 2x=0\Rightarrow x=\frac{\pm \pi}{4}+k\pi (k\in\mathbb{Z})\)

Với \(\sin 2x=\frac{1}{3}\Rightarrow x=\frac{1}{2}\arcsin \frac{1}{3}+k\pi \) hoặc \(x=\pi -\frac{1}{2}\arcsin \frac{1}{3}+k\pi\)

Với \(\sin 2x=-2\) thì loại vì $\sin 2x\in [-1;1]$

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

b) \(f'(x)=g(x)\)

\(\Leftrightarrow -x^2\sin x+4x\cos ^2\frac{x}{2}=x-x^2\sin x\)

\(\Leftrightarrow 4x\cos ^2\frac{x}{2}=x\)

\(\Leftrightarrow x(4\cos ^2\frac{x}{2}-1)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ \cos ^2\frac{x}{2}=\frac{1}{4}\rightarrow \cos \frac{x}{2}=\pm \frac{1}{2}\end{matrix}\right.\)

Với \(\cos \frac{x}{2}=\frac{1}{2}\Rightarrow x=\pm \frac{2\pi}{3}+4k\pi \) với $k$ nguyên.

Với \(\cos \frac{x}{2}=\frac{-1}{2}\Rightarrow x=\frac{-4\pi}{3}+4k\pi \) với $k$ nguyên.

17 tháng 5 2016

Hàm số f(x) = x3 + 2x - 1 xác định trên R và x= 3 ∈ R.

 f(x) =  (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3) 
nên hàm số đã cho liên tục tại điểm x= 3.

 

NV
6 tháng 11 2019

a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)

Khai triển \(\left(2-3x^2+x^3\right)^5\)

\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)

Hệ số của số hạng chứa \(x^9\):

\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)

b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)

Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_5^4+C_5^3+...+C_{22}^3\)

\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)

Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)

1/ tiếp tuyến của đồ thị hàm số y= x3 -3x2 +1 có hệ số góc nhỏ nhất là đường thẳng? 2/ cho hàm số y= \(\frac{2x-3}{x-2}\) có đồ thị (C). Một tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B và AB=\(2\sqrt{2}\). Tính hệ số góc tiếp tuyến đó. 3/ cho hàm số y= \(\frac{-x+2}{x-1}\) có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một...
Đọc tiếp

1/ tiếp tuyến của đồ thị hàm số y= x3 -3x2 +1 có hệ số góc nhỏ nhất là đường thẳng?

2/ cho hàm số y= \(\frac{2x-3}{x-2}\) có đồ thị (C). Một tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B và AB=\(2\sqrt{2}\). Tính hệ số góc tiếp tuyến đó.

3/ cho hàm số y= \(\frac{-x+2}{x-1}\) có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) đi qua A. Tổng giá trị tất cả phần tử của S là?

4/ cho hàm số g(x) = f2(sinx), biết f'(\(\frac{1}{2}\)) = f(\(\frac{1}{2}\)) = 2. Tính g'(\(\frac{\pi}{6}\))

5/ cho hàm số y= f(x) có đạo hàm y' = f'(x) liên tục trên R và hàm số y= g(x) với g(x)=f(4-x3). Biết rằng tập các giá trị của x để f'(x)<0 là (-4;3). Tập các giá trị của x đẻ g'(x)>0 là?

0
19 tháng 11 2023

a: \(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}3x^2-2x+4\)

\(=3\cdot\left(-2\right)^2-2\cdot\left(-2\right)+4\)

\(=3\cdot4+4+4=20\)

\(f\left(-2\right)=3\cdot\left(-2\right)^2-2\left(-2\right)+4=20\)

=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)

=>Hàm số liên tục tại x=-2

b: \(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}2x^3-3x^2+1\)

\(=2\cdot3^3-3\cdot3^2+1\)

\(=2\cdot27-27+1=27+1=28\)

\(f\left(3\right)=2\cdot3^3-3\cdot3^2+1=54-27+1=28\)

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\)

=>Hàm số liên tục tại x=3