Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề (d) y=2(m-1)x+m^2+2m
a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)
Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)
=>\(3=2\left(m-1\right).1+m^2+2m\)
<=>\(m^2+2m+2m-2-3=0\)
<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)
b, Phương trình hoành độ giao điểm của (P) và (d) :
\(x^2=2\left(m-1\right)x+m^2+2m\)
<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)
Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B
c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)
\(x_1^2+x_2^2+6x_1x_2>2017\)
<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)
<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)
<=>\(4m^2-8m+4-4m^2-8m-2017>0\)
<=>\(-16m-2013>0\)
<=>\(m< \frac{-2013}{16}\)
a) PT hoành độ giao điểm (d) (P)
mx-n+1=x2
<=> x2-mx+m-1=0
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Vậy (d); (P) luôn cắt nhau tại 2 điểm phân biệt
b) \(x_1^2x_2+x_2^2x_1=2\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=2\)
\(\Leftrightarrow\left(m-1\right)m=2\)
<=> m2-m-2=0
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)
a) phương trình hoành độ giao điểm của (d)và (P) là:
\(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
TA CÓ: a=1, b'=\(\frac{-m}{2},\)c= m-1
\(\Rightarrow\)\(\Delta'\)=\(\left(b'\right)^2-ac=\left(\frac{-m}{2}\right)^2-\left(m-1\right).1\)\(=\frac{m^2}{4}-m+1\)
\(=\)\(\frac{m^2}{4}-2.\frac{m}{2}.1+1=\left(\frac{m}{2}-1\right)^2\)
\(\text{ để đường thẳng d và parabol ( P) cắt nhau tại 2 điểm phân biệt}:\)
\(\Delta'>0\Leftrightarrow\)\(\left(\frac{m}{2}-1\right)^2>0\Leftrightarrow m\ne2\)
vậy với m \(\ne2\) thì ......
cậu có chép thiếu đề bài ko đấy
xem lại hộ tớ vs
#mã mã#
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)
pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)
Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.
Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)
Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\
Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)
1) Phương trình hoành độ của (P) và (d) là:
\(-x^2=mx-1\)
\(\Leftrightarrow-x^2-mx+1=0\)
a=-1; b=-m; c=1
Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3=-4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-4\)
\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)=-4\)
\(\Leftrightarrow-m^3-3m+4=0\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow m^3-m+4m-4=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)
\(\Leftrightarrow m-1=0\)
hay m=1