là số nguyên lớn nhất không vượt quá...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)

\(\Rightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\)

\(\Rightarrow3,5>n>1,75\)

\(\Rightarrow\)\(\in\){ 2 ; 3 }

1 tháng 11 2017

\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)

\(\Rightarrow n=2\)

25 tháng 5 2021

Do \frac{1}{{{n^2}}} < \frac{1}{{{n^2} - 1}} với mọi n ≥ 2 nên 

A < C = \frac{1}{{{2^2} - 1}} + \frac{1}{{{3^2} - 1}} + ... + \frac{1}{{{n^2} - 1}}

Mặt khác:

\begin{matrix} C = \dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + \dfrac{1}{{3.5}} + ... + \dfrac{1}{{\left( {n - 1} \right)\left( {n + 1} \right)}} \hfill \\ C = \dfrac{1}{2}\left( {\dfrac{1}{1} - \dfrac{1}{3} + \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{3} - \dfrac{1}{5} + ... + \dfrac{1}{{n - 1}} - \dfrac{1}{{n + 1}}} \right) \hfill \\ C = - \left( {1 + \dfrac{1}{2} - \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right) < \dfrac{1}{2}.\dfrac{3}{2} = \dfrac{3}{4} < 1 \hfill \\ \end{matrix}

Vậy A < 1

25 tháng 5 2021

b.

\begin{matrix} B = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{{\left( {2n} \right)}^2}}} \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + .... + \dfrac{1}{{{n^2}}}} \right) \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + A} \right) \hfill \\ \end{matrix}

\(\Rightarrow P< 0,5\)

10 tháng 7 2017

Xét biểu thức , thấy :

\(-\left|y\right|\le0\)

\(\frac{-1}{4}-\left|y\right|\le\frac{-1}{4}< 0\)                 (1)

Mặt khác \(\left|\frac{1}{2}-\frac{1}{3}+x\right|\ge0\)         (2)

Từ (1) và (2) , ta thấy đẳng thức mâu thuẫn

Vậy , không có giá trị x,y thõa mãn 

10 tháng 7 2017

Câu hỏi của Kagamine Rin - Toán lớp 7 - Học toán với OnlineMath

10 tháng 7 2017

gianroi limdimĐó cx là câu hỏi của mk mà bạn! Rất tiếc vì bạn trả lời muôn nên sẽ ko đc tick!

NM
1 tháng 9 2021

ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) Vậy A<1

b. \(4B=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}=1+A< 2\Rightarrow B< 0.5\)

1 tháng 11 2019

Cái đề bài chuẩn CMNR.^^

12 tháng 5 2019

Chứng minh rằng: mày bị ngáo

trtrfdretrrfgt.........................................................

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm